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Abstract— Distributed Space Systems (DSS) can accomplish
many objectives that would be difficult or impossible with a sin-
gle monolithic spacecraft, but often use spacecraft with limited
propulsion and computing power. To conserve propellant, DSS
spacecraft can leverage environmental forces to produce low cost
relative forces, such as atmospheric drag in Low Earth Orbit
(LEO). Atmospheric drag can be controlled on-board spacecraft
by modulating differential attitude to create differential drag
with little to no propulsion. This work maximizes this strat-
egy by developing robust, closed-form algorithms for optimal
”hybrid” control, defined here as complementing the magnitude
and directionality deficiencies of differential drag with the supe-
rior control authority of propulsive maneuvers within the same
control window. The use of drag introduces a significant source
of dynamic uncertainty to the control problem, primarily from
inaccurate atmospheric density modelling. This paper develops
a robust control architecture to reject dynamic modeling errors
and recover final state accuracy performance. The architecture
periodically re-solves the remaining drag maneuver plan in a
diminishing horizon policy, using the current state estimate to
reject operational and navigation errors while retaining the cost
savings offered by differential drag. The approach is built
upon reachable set theory, a control analysis technique that pro-
vides conditions for optimality for Linear Time Variant (LTV)
systems with norm-like cost functions and optimally decouples
hybrid control into separate propulsive and differential drag
sub-problems. The optimal decoupling allows the architecture
to solve control for hybrid or drag-only maneuvering. The
optimality conditions are leveraged to prove the asymptotic
Lyapunov stability of ideal reachable set-based control solutions
and derive error bounds on this stability. A covariance analysis
on the primary sources of error in hybrid control determines
that the dominating source of uncertainty is the atmospheric
density model. This conclusion allows the bounds on Lya-
punov stability to be completely met by simply conditioning
the atmospheric density value used in the control solutions.
The derived Lyapunov stability bounds and performance of
the algorithm are demonstrated experimentally in high fidelity
full-force orbital simulations of the upcoming Space Weather
Reconfigurable Multiscale Experiment (SWARM-EX) mission.
The overall approach used by this work is not specific to DSS
and can be extrapolated to any LTV control system with norm-
like cost.
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1. INTRODUCTION
Formation flight, part of the broader field of Distributed Space
Systems (DSS), enables multiple spacecraft to accomplish
objectives that would be infeasible for a single monolithic
spacecraft, with additional built-in redundancies to single
component failure. The GRACE, PRISMA, TanDEM-X,
Starling, and MMS missions, among others, have demon-
strated the capabilities of distributed instrumentation and
navigation in orbit and drive interest in future missions such
as the VIrtual Super Optics Reconfigurable Swarm (VISORS)
and the Space Weather Atmospheric Reconfigurable Multi-
scale EXperiment (SWARM-EX), a major motivator of this
work [1–6]. Satellite formations and swarms commonly
incorporate smaller, cheaper spacecraft to lower mission cost,
introducing restrictions on propellant and collision safety that
limit mission lifetime and autonomy. In Low Earth Orbit
(LEO), atmospheric drag can supplement propulsion through
on-board modulation of differential attitude to generate dif-
ferential drag at little to no propulsive cost. However, drag
generally suffers from poor characterization due to inaccurate
atmospheric density modelling. This uncertainty, in addition
to that produced by real world propulsion, attitude determina-
tion and control, and state estimation, can cause a significant
deterioration on the final state accuracy of control solutions
and drives interest in balancing cost-efficient maneuvering
with robust control strategies that reject operational sources
of uncertainty and provide control accuracy guarantees.

Error rejection and robust control techniques are fundamental
to the problem of in-flight mission implementation of ideal
maneuver planning. Extensive literature exists on the subject,
focusing mostly on propulsion given its use on many previous
DSS missions, and different feedback techniques are used
depending on the formulation of the control problem and
the choice of state representation. Propulsive maneuvers
may be approximated as impulsive, or instantaneous changes
in spacecraft velocity, to create Linear Time-Variant (LTV)
models of controlled relative spacecraft motion and kine-
matically optimal control profiles, for both cartesian and
Integration Constant state representations. The CanX-4/-5
mission used a cartesian relative state and Linear Quadratic
Regulator (LQR) framework to balance minimum delta-v
reconfiguration cost with desired state tracking errors, re-
solving the remaining maneuver plan immediately before
conducting each maneuver [7]. Relative Orbital Elements
(ROE), an Integration Constant parameterization, offer in-
creased insight over cartesian states into the secular, long-
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term relative motion of spacecraft by removing the short-
term dynamics from the LTV model, resulting in fully deter-
ministic solutions. The PRISMA and TanDEM-X missions
used closed-form, delta-v efficient algorithms for regularly
scheduled formation keeping, accomplishing error rejection
in a similar strategy to CanX-4/-5 by re-solving maneuvers
until the moment of actuation [2]. Lippe et al. and Holzinger
et al. applied Lyapunov stability theorems to ROE-based
control algorithms to provide guarantees for stable, delta-
v efficient maneuvering in near-circular or eccentric orbit
and bounds on stable, uncoordinated formation keeping and
collision safety [8, 9]. Chernick and D’Amico also leveraged
the ROE LTV formulation to conduct a covariance sensitivity
analysis and quantify the effects of dynamic modelling error
sources on closed-form optimal maneuver plans [10].

Simple, robust feedback control laws for continuous thrust,
with gains defined as a function of current spacecraft state,
can be derived from the Algebraic Ricatti Equation solution
to LQR, Lyapunov theory, sliding mode control, or non-
linear switching lanes, for both cartesian and ROE states
[11–15]. Given the overall higher complexity of the con-
tinuous dynamics model, several works have applied Model
Predictive Control (MPC) to incorporate additional guidance-
based considerations into the control problem, including a
multi-objective cost function, thrust magnitude and direc-
tional constraints, and collision safety [16–18]. Many of the
techniques used for low-thrust propulsive control have been
extended to differential drag control, an inherently low-thrust
maneuver, to converge despite poor drag characterization.
Mazal et al. and Riano-Rios et al. have implemented LQR
with provable Lyapunov stability to converge to a desired
state with guaranteed error bounds for known uncertainty and
with online parameter estimation on the primary sources of
uncertainty [19, 20]. Dell’Elce et al. and Hu et al. instead
used differential drag in a finite-horizon MPC architecture
to accommodate arbitrary constraints while minimizing con-
trol window duration or distribute formation regularization
throughout a swarm while ensuring reconfiguration constraint
feasibility [21, 22]. Koenig et al. demonstrated that a non-
linear state space switching lane control law for low-thrust
control was equally applicable to differential drag, rejecting
atmospheric density modeling errors by defining a bang-bang
and deadband control law only dependent on the spacecraft’s
current state [15].

A very limited number of works have expanded beyond a
single control source to consider the more complex roto-
translational problem, producing relative accelerations from
both on-board thrusters and differential attitude. The dual-
quaternion parameterization combines translational and rota-
tional motion into a single dynamics model, and applications
of LQR, sliding mode, and Proportional Integral control have
produced asymptotically stable, but suboptimal, controllers
[23–25]. Riano-Rios et al. also accomplished coupled atti-
tude stabilization and changes in translational motion under a
single Lyapunov stable controller, but only for a particular
spacecraft structural design [26]. Shouman et al. instead
employed a specialized satellite construction to decouple
translational and attitude control and demonstrated the abil-
ity of differential drag to reject perturbations on propulsive
maneuver plans with Lyapunov stability [27]. However, none
of these roto-translational robust control approaches address
optimal maneuvering, specifically using differential drag not
only to reject disturbances to the propulsive maneuver plan,
but also to decrease the propulsive reconfiguration cost.

To meet this gap, this paper presents a novel DSS ”hy-

brid” maneuver planning architecture, complementing the
magnitude and directional deficiencies of differential drag
with the superior control authority of propulsive maneuvers
within the same control window. The architecture uses the
current state estimate to periodically re-solve the remaining
maneuver plan and reject maneuver execution, estimation,
and dynamic propagation errors while retaining differential
drag cost savings. The foundation of this architecture is
a generic reachable set theory-based optimal hybrid control
solver. Reachable set theory is a control analysis technique
implemented in previous work by the authors that provides
optimality conditions for both individual maneuvers and the
overall maneuver plan, enables the creation of provably-
optimal control solvers, and largely decouples hybrid con-
trol into mutually optimal drag and propulsion sub-problems
[10, 28, 29]. This paper provides three major contributions
to the state of the art. First, the re-solve architecture defines
an algorithmic structure for stable, convergent, and provably-
optimal hybrid DSS control. Second, generic reachable
set theory-based provably-optimal solvers are proven to be
asymptotically Lyapunov stable, and bounds on maneuver
plan error are derived that guarantee asymptotic convergence.
Third, the main sources of state error in hybrid control are
detailed qualitatively and compared quantitatively through
covariance error ellipsoid performance bounds.

This novel robust hybrid control approach is defined in four
major sections. First, the re-solve architecture is established
for hybrid and drag-only control. The hybrid setup extends
the reachable set-based maneuver planning to a shrinking
horizon policy, re-solving drag maneuvers for the remaining
control window. The drag-only setup adjusts the control
window length to accommodate the limitations on drag con-
trol authority and converge to the final state without propel-
lant. Second, the architecture is proven to be asymptotically
Lyapunov stable under ideal maneuvering, and bounds on
maneuver plan error are derived that guarantee this conver-
gence. Third, covariance error analysis of hybrid control
identifies the primary causes of final state performance loss
to inform the design of the re-solve architecture, such that
all operational errors can be rejected with drag re-solves
alone. Finally, the architecture’s performance is validated
in a high fidelity full-force orbital simulation that propagates
the Gauss Variational Equations (GVE) for the relevant LEO
perturbations.

2. PROBLEM DEFINITION
State Representation and Dynamics

Here, formations and swarms consist of two or more space-
craft flying in close proximity, such that the relative motion
between them can be linearized about a reference orbit,
traditionally of an uncontrolled spacecraft. This orbit, known
as the ”chief”, can be designated within the formation or can
be imaginary, and the motion of the other spacecraft, each
designated as ”deputy,” is defined relative to this orbit. Two
state representations are of primary interest in this paper to
describe and enable DSS control. The first is the cartesian
Radial-Tangential-Normal (RTN) frame, defined from the
chief outward radially from the central body, normally along
the chief’s angular momentum, and tangentially to complete
the right-handed triad. The RTN frame is typically used to
express deputy control actions. The second and equivalent
representation is quasi-nonsingular ROE, a nonlinear combi-

2



nation of the Keplerian orbital elements, defined as

δα =


δa
δλ
δex
δey
δix
δiy

 =


∆a/ac

∆u+∆Ωcos ic
ed cosωd − ec cosωc
ed sinωd − ec sinωc

∆i
∆Ωsin ic

 , (1)

where ∆ is a difference in the associated quantity between
the deputy (subscript d) and the chief (subscript c), δa is the
relative semi-major axis, δλ is the relative mean longitude,
δex and δey are the components of the relative eccentricity
vector δe, δix and δiy are the components of the relative
inclination vector δi, u = M + ω is the mean argument
of latitude, and a, e, i, Ω, ω, and M are the Keplerian
orbital elements. The quasi-nonsingular formulation is valid
for orbits of arbitrary eccentricity and in particular for near-
circular orbits. This work uses mean ROE, calculated from
mean Keplerian orbital elements, to remove short period
oscillations from the state. Here, mean refers to the orbit
average of J2-perturbed two-body motion. The mean ROE
under unperturbed Keplerian dynamics are constant values
equivalent to the Integration Constants of the Hill-Clohessy-
Wiltshire (HCW) and Yamanaka-Ankersen (YA) differential
equations of spacecraft relative motion at small separations
[11]. As a function of the Keplerian orbital elements, both
osculating and mean ROE vary slowly under orbital pertur-
bations, enabling the creation of an LTV dynamic constraint
model of perturbed Keplerian motion with RTN control ac-
tions. The secular and long-term evolution of the ROE is
captured by a State Transition Matrix (STM) that linearly
propagates the state over a desired time interval. LEO orbits
have negligible eccentricity with the primary perturbations
of J2 and atmospheric drag. Given that differences in atmo-
spheric drag will be posed as a control force, this work uses
an STM that includes corrections for J2 for mean ROE in
near-circular orbit, given as

ΦJ2(t) = ΦJ2(αc(t), tf − t) (2)

=


1 0 0 0 0 0

ΦJ2
21(t) 1 0 0 ΦJ2

25(t) 0
0 0 cos(ω̇cτ) − sin(ω̇cτ) 0 0
0 0 sin(ω̇cτ) cos(ω̇cτ) 0 0
0 0 0 0 1 0

ΦJ2
61(t) 0 0 0 ΦJ2

65(t) 1

 ,

with the following simplifying substitutions

τ = tf − t , ηc =
√
1− e2c , (3)

κc =
3

4

J2R
2
E

√
µE

a
7/2
c η4c

, ω̇c = κc(5 cos
2(ic)− 1)

ΦJ2
21(t) = −(

3

2
nc +

7

2
κc(1 + ηc)(3 cos

2(ic)− 1))τ

ΦJ2
25(t) = −κc(4 + 3ηc) sin(2ic)τ ,

ΦJ2
61(t) =

7

2
κc sin(2ic)τ , ΦJ2

65(t) = 2κc sin
2(ic)τ,

where αc(t) are the mean Keplerian orbital elements at time
t, tf is the end of the control window, n is the mean motion,
RE , J2, and µE are the radius, oblateness, and standard
gravitational parameter of Earth, and ΦJ2

i,j(t) is the element
in the ith row of the jth column [30]. The map between RTN
delta-v control actions and resulting changes in osculating

ROE is derived through the Gauss Variational Equations and
captured in control input matrix B for near-circular orbit,
given as

B(t) =
1

acnc


0 2 0
−2 0 0

sinuc 2 cosuc 0
− cosuc 2 sinuc 0

0 0 cosuc
0 0 sinuc

 , (4)

where B(t) = B(αc(t)) and n is the mean motion [2]. It
is important to note that B also applies approximately to
mean ROE and decouples in-plane (IP) control (radial and
tangential maneuvers with δa, δλ, and δe states) from out-of-
plane (OOP) control (normal maneuvers with δi states) as a
product of linearization [31]. The dynamic constraint model
of formation flight can be posed as

δαf = ΦJ2(t0)δα0 +

∫ tf

t0

ΦJ2(t)B(t)u(t)dt, (5)

with initial state δα0 at t0, final desired state δαf at tf , and
the RTN actions u(t) occurring in the reconfiguration control
window [t0, tf ]. u in this paper will include both propulsive
thrust uprop and differential drag udrag.

Differential Drag

Atmospheric drag, on a single spacecraft, is a non-
conservative force that acts directly against the direction of
motion, given in RTN as

pdrag =
[
0 − 1

2ρv
2CDA

m 0
]T

=
[
0 − 1

2ρn
2a2B 0

]T
,

(6)
where ρ is the atmospheric density, v = na approximates
spacecraft tangential velocity in near-circular orbit, CD is
the spacecraft’s coefficient of drag, A is the cross-sectional
area, m is the spacecraft’s mass, and B = CDA

m defines the
spacecraft’s ballistic coefficient. The near-circular assump-
tion aligns the spacecraft’s velocity tangentially with its RTN
frame, simplifying drag to a negative tangential-only force.
Spacecraft capable of attitude control can modulate this force
by changing A normal to the spacecraft’s velocity vector,
and differential drag, between a chief and deputy, can be
controlled through differential attitude. Differential drag can
then be posed as a control force in RTN as

udrag(t) = pdrag
d (t)− pdrag

c (t) =
[
0 1

2n
2
ca

2
c∆Bρ(t) 0

]T
,
(7)

where ∆Bρ(t) = ρ̄c(Bc(t) − Bd(t)) defines the augmented
differential ballistic coefficient. Atmospheric density can
fluctuate greatly over short periods of time, so the orbital
time-average ρ̄ is used for simplicity. This assumption has
little effect on the output solution given the low instantaneous
magnitude of differential drag, but it is not required to find a
valid drag maneuver plan. By assuming close orbits and small
separations with respect to orbital radius, both the chief and
deputy share the chief’s ρ̄, n, a, and RTN frame, since RTN
orientation varies by less than 1◦ for along-track separations
up to 100km. The magnitude of udrag is bounded by the limits
on ∆Bρ(t), dictated by the minimum and maximum A for
both the chief and deputy. It is worth noting that differential
drag is almost always present between any two spacecraft
because differential attitude is rarely zero, and residual differ-
ences in B exist even for identically built spacecraft [1]. The
effect of differential attitude on spacecraft relative dynamics
can be quantified by substituting (7) into (5).
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Optimal Control Problem

The general optimal control problem used by this paper is
given as

minimize
∫ tf

t0

f(u(t), t) (8)

subject to δαf = ΦJ2(t0)δα0 +

∫ tf

t0

ΦJ2(t)B(t)u(t)dt,

where f is a norm-like cost function. The attitude con-
straints of each spacecraft, roto-translational coupling, and
deviations from the drag maneuver plan to conduct propul-
sive maneuvers are all neglected, implying that propulsive
and differential drag control can be used independently and
simultaneously. Several aspects of this general formulation
can be made more specific. First, propulsive actions are
assumed to be ”impulsive,” or instantaneous additions of
delta-v, given that burn time is short with respect to orbital
period. Second, attitude maneuvering is assumed to require
negligible propulsive-cost, making drag a zero-cost maneuver
and removing it from the cost function. Third, the spacecraft
is assumed to have a single propulsive thruster, and the
appropriate choice of f is an L2-norm of each propulsive
maneuver. Fourth, the dynamic constraint is rearranged to
group the invariants of the reconfiguration problem into a
quantity known as the pseudostate ∆δα, given as

∆δα = δαf −ΦJ2(t0)δα0. (9)

Finally, the control window is discretized into an arbitrary
series of time steps, and differential drag is assumed to be
constant over each time step [tj , tj+1], such that its effect
over each time step can be analytically integrated to pseu-
dostate space. The optimal control problem considered by
the remainder of this paper is given as

minimize
k∑

i=1

∥Cpropui∥2, subject to∆δα=

k∑
i=1

Γ(ti)ui, (10)

for ti ∈ [t0, tf ]. Control inputs ui = [upropulsive
i ;udrag

i ] con-
catenate both forms of control in the RTN frame, and propul-
sive cost is isolated by selector matrix Cprop = [I3,03]. The
auxiliary matrix Γ(ti)= [ΦJ2(ti)B(ti),

∫ ti+1

ti
ΦJ2(t)B(t)dt]

translates propulsive maneuvers at time ti and analytically
integrates differential drag maneuvers held constant over time
step [ti, ti+1] to pseudostate space. The control window
[t0, tf ] is discretized into k time steps, such that

∑k
i=1(ti+1−

ti) = tf − t0. A primary advantage of this formulation is the
norm-like cost function with LTV constraints, properties that
will be leveraged in the next section to derive conditions for
control optimality through reachable set theory.

3. CLOSED-FORM OPTIMAL PLANNING
Reachable Set Theory

The proposed robust architecture is built upon the conditions
for optimality found through reachable set theory, and the
overall approach is summarized here. Reachable set theory
primarily considers two sets under the dynamics in (5): the set
S(c, T ) of all ∆δα that can be reached by a single maneuver
u of non-negative arbitrary cost c over times in the control
window T and the set S∗(c, T ) of all ∆δα that can be reached

by k ≥ 1 maneuvers ui at times ti ∈ T of combined cost no
greater than c, given as

S(c, T ) = {∆δα :∆δα = Γ(t)u, ∥u∥2 ≤ c, t ∈ T},
(11)

S∗(c, T ) = {∆δα :∆δα = Σk
i=1Γ(ti)ui, ti ∈ T, (12)

∥ui∥2 ≤ ci,Σ
k
i=1ci = c}.

It can be seen that S∗ is a linear combination, and therefore
convex hull, of the ∆δα in S. Given a norm-like cost function
that scales linearly with magnitude, the scalar c that scales
S∗ until its boundary contains the reconfiguration ∆δα is the
minimum or optimal cost δvmin.

Several observations about this formulation establish the au-
thors’ approach to hybrid control [10]. The 2n-dimensional
(2nD) reconfiguration can be broken down into n 2D planes,
where the 2D plane that contains the highest δvmin, known as
the dominant plane, drives the minimum cost of the full re-
configuration. Within each 2D plane, the reachable set can be
broken down into distinct contours known as dominance case
candidates, defined by the outward normal of the supporting
hyperplane for that contour [28]. The dominance case of a
reconfiguration is the distinct contour of the reachable set that
intersects ∆δα at minimum cost within the dominant plane.
The minimum cost δvmin for the reconfiguration is found as
the solution to

maximize:
ηT∆δα

maxt∈T

(
max||u||≤1

(
ηTΦJ2(t)B(t)u

)) , (13)

where η is the supporting hyperplane of the reconfiguration
dominance case [28]. Assuming a finite number of domi-
nance case candidates exist, the maximization problem can be
solved by quantifying (13) for each dominance case candidate
and corresponding η, the largest of which is the δvmin for the
reconfiguration. Furthermore, optimal maneuver times Topt
and directions for each dominance case candidate, resulting
from the denominator of (13), occur at points on S∗, defined
by η, that share a boundary with S.

Applying this methodology to the hybrid control problem in
(10), the hybrid reachable sets are found by taking a single
maneuver of arbitrary cost and numerically sampling the
∆δα effect over all possible maneuver times and directions
in the control window to find the set S from (11). For differ-
ential drag specifically, the zero-cost maneuvers are sampled
over maneuver start times, maneuver durations limited by
tf , and possible magnitudes, from the negative to positive
bound on ∆Bρ. The ROE can be conveniently arranged
into 3 2D planes to match the decoupling found in B: the
∆δa plane (∆δa, ∆δλ), the ∆δe plane, and the ∆δi plane.
This arrangement enables the IP and OOP reconfiguration
sub-problems to be analyzed and solved independently, while
still accounting for the J2 coupling present in ΦJ2(t), and
the removal of drag from the OOP sub-problem. Propulsive
and differential drag control can also be decoupled into
independent IP sub-problems. Because drag is a zero-cost
maneuver, the dominance case candidates and corresponding
η that result from the propulsive analysis can also be aligned
with the differential drag reachable set to identify optimal
drag profiles, or the modulation of differential attitude over
time. Fig. 1 illustrates this approach visually for the IP
reconfiguration.

Chernick and D’Amico leveraged the simplicity of the
propulsive ROE reachable sets to identify three IP dominance
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Figure 1. In-plane reachable sets for propulsive control (left
column) and differential drag (right column) over a 100 orbit
control window in the ∆δa plane (top row) and ∆δe plane

(bottom row). Dominance case candidates and related η
correspond to unique contours of the propulsive S∗, and
these η are applied to the differential drag S∗ to identify

optimal attitude profiles.

case candidates (δa, δλ, and δe) and one OOP dominance
case candidate (δi), named for the dimension that drives
minimum cost in the dominance case candidate’s contour
[10]. All IP dominance case candidates have tangential-only
optimal maneuvers, allowing analytical expressions of the η
and δvmin for each dominance case candidate. It is worth
noting that the η for the dominance case candidates in the
∆δa plane (cf. Fig. 1, top left) are restricted directionally to
the angle of the affine contours, while the η in the ∆δe plane
(cf. Fig. 1, bottom left) are defined at the point where the
circular S∗ contour intersects with ∆δα. This means the δe
dominance case candidate has an infinite number of viable η,
with several possibilities illustrated in Fig. 1. The IP δvmin,
relevant for hybrid control, are given as

δvmin,δa = ±1

2
ncac∆δa, (14)

δvmin,δλ =
±(m∆δλ−∆δa)

∆δa0
, (15)

δvmin,δe =
1

2
nc||ac∆δe||2, (16)

where ∆δa0 defines the pseudostate achieved by a unitary
tangential impulse at t0, m = 2/ΦJ2

21(t0), and δvmin denotes a
propulsive delta-v minimum [10]. The authors aligned the
η from the IP propulsive dominance case candidates with
the ROE differential drag reachable sets to find the optimal
differential attitude profile associated with each dominance
case candidate. The optimal drag maneuvers were identified
as maneuvers in both the differential drag S and S∗ where
the contour of S∗ aligns with the hyperplane defined by
the propulsive dominance case candidate η. As a simple
example, the single optimal drag maneuver for the δa domi-
nance case candidate spans the entire control window in the
direction of ∆δa (ηδa, cf. Fig. 1, top right). The analytical
effects of the optimal drag profile on each corresponding

dominance case candidate’s δvmin are given as

∆δvmin,δa=
1

2
a2cn

2
c∆Bρ∆t, (17)

∆δvmin,δλ=acnc∆Bρ Φ̂
J2
21m(2τ∆t−2t∆t−∆t2)−2∆t

2∆δa0
,

(18)

∆δvmin,δe=
a2cn

2
c∆Bρ

π
∆t, (19)

where ∆δvmin denotes the change in the delta-v minimum due
to using a drag profile, τ = tf − t0, Φ̂J2

21 = ΦJ2
21(t0)/τ

is the time invariant component of ΦJ2
21(t0), t and ∆t are

the start time and length of the dominance case candidate
drag profile, and the periodic effects in ∆δvmin,δe are ap-
proximated as linear [29]. ∆δvmin is negative for all optimal
drag maneuvers, although the change may be mathematically
defined as positive or negative depending on the sign of ∆Bρ.
These expressions provide a simple analytical evaluation of
optimality for reachable set theory-based hybrid control algo-
rithms. They also enable a minimum cost-based estimate on
the time required to achieve drag-only controllability of each
IP dimension, setting each ∆δvmin to zero and solving for
∆t. This estimate will be used for drag-only reconfiguration
maneuver planning within the proposed re-solve architecture.

4. RE-SOLVE ARCHITECTURE

Algorithm 1 Robust Hybrid Re-Solve Architecture
Input: δαf , tf ,∆tre-solve, DRAG ONLY

1: αc(t0), δα0, tlast solve = t0 ← Navigation
2: if DRAG ONLY is true then tf ← t0, (29)
3: end if
4: ∆δα← (9)
5: ρ̄c ← Atmospheric Density Model
6: ti,u

propulsive
i ,udrag

i ← Solve (10)
7: while t0 < tf do
8: αc(t0), δα0, t0 ← Navigation
9: if t0 − tlast solve > ∆tre-solve then
10: ∆δα← (20)
11: Clear udrag

i for ti > t0
12: ρ̄c ← Atmospheric Density Model
13: udrag

i ← Solve (10)
14: tlast re-solve = t0
15: end if
16: end while

Hybrid Control

Algorithm 1 (Alg. 1), the hybrid re-solve strategy proposed
by this paper, aims to augment the optimality conditions
found through reachable set theory with the convergent, error-
rejection properties of the iterative methods found in the lit-
erature. The architecture begins by using the current absolute
and relative state estimates from navigation on-board (Alg.
1, Line 1) to find the reconfiguration pseudostate (Alg. 1,
Line 4) and a time-averaged density over the control window
from an on-board atmospheric density model (Alg. 1, Line
5) to conduct an initial solve of control at the beginning of
the control window (Alg. 1, Line 6) with a generic reachable
set theory-based solver. The architecture then periodically
re-solves the drag maneuver plan in a diminishing horizon
approach, by using the current time and state estimate (Alg.
1, Line 8) to find the remaining pseudostate (Alg. 1, Line
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10), removing future drag maneuvers from the maneuver plan
while retaining the propulsive maneuvers (Alg. 1, Line 11),
updating the time-averaged density (Alg. 1, Line 12), and
solving drag maneuvers for the remaining control window
(Alg. 1, Line 13), again using a generic reachable set-based
solver. The re-solve feedback loop (Alg. 1, Lines 7-16)
is restricted to the drag maneuver plan to preserve the cost
savings offered by hybrid control, as errors in the dynamics
model will likely cause non-optimal maneuvering that trans-
lates through propulsive re-solves into increases in overall
reconfiguration cost. Drag re-solves are accomplished by
removing the modelled effect of future propulsive maneuvers
from the current pseudostate (Alg. 1, Line 10), given as

∆δα = δαf −ΦJ2(t0)δα0 −
k∑

i=1

Γ(ti)C
propui, (20)

for ti > t0 where ui is the current maneuver plan, produced
by either the initial solve in Line 6 or the feedback loop in
Line 13, and t0 is set as the current on-board GPS time of the
satellite. This approach assumes that the control authority of
drag maneuvering is sufficient to reject all modelling errors,
a requirement that will be met in later sections. The re-
solve cadence used by the architecture is arbitrary, chosen
by this paper to be conducted at a constant time interval
∆tre-solve over the control window (Alg. 1, Line 9), and may
occur as often as allowed by the science mission and the
computational constraints of the hardware. The time of the
last re-solve is held by tlast solve.

Differential Drag Only Control

Alg. 1 may also accomplish the IP reconfiguration without
propellant, similar to the propulsion-free convergent capa-
bilities found in the state of the art. Under drag magnitude
limitations, the desired state is no longer guaranteed to be
reachable for an arbitrary control window, which must be
established before planning optimal maneuvers. A choice
of control window that guarantees IP reachability can be
made as the sum of control windows required to send all
IP dominance case candidate δvmin to zero. Setting (14)
and (17) equal, the time ∆tδa required to achieve the δa
reconfiguration is found as

1

2
ncac∆δa =

1

2
a2cn

2
c∆Bρ∆tδa, (21)

∆tδa =
∆δa

acnc∆Bρ
. (22)

The time ∆tδλ required to achieve the δλ reconfiguration is
derived by expanding (15) and (18), given as

δvmin,δλ =
±(m∆δλ−∆δa)

∆δa0
(23)

=
± 2

Φ̂
J2
21∆tδλ

(δλf − Φ̂J2
21∆tδλδa0 − δλ0)− (δaf − δa0)

2
ncac

,

∆δvmin,δλ(t)=acnc∆Bρ Φ̂
J2
21m(2τ∆t−2t∆t−∆t2)−2∆t

2∆δa0
(24)

=a2cn
2
c∆BρΦ̂J2

21m(∆t2δλ−t∆tδλ−1/4∆t2δλ)−∆tδλ,

where the length of an optimal δλ drag maneuver is set to
half of the control window ∆tδλ. Setting (23) equal to two

optimal δλ maneuvers in the first and second half of the
control window, ∆tδλ is found as

δvmin,δλ = ∆δvmin,δλ(t = t0) (25)

+∆δvmin,δλ(t = t0 +
1

2
∆tδλ),

1

4
Φ̂J2

21acnc∆Bρ∆t2δλ ± Φ̂J2
21(δaf + δa0)∆tδλ (26)

± 2(δλ0 − δλf ) = 0.

∆tδλ is solved as the valid root of (26). Setting (16) and (19)
equal, the time ∆tδe guaranteed to achieve the δe reconfigu-
ration is given as

1

2
nc||ac∆δe||2 =

a2cn
2
c∆Bρ

π
∆tδe, (27)

∆tδe =
π||∆δe||2,max

2acnc∆Bρ
, (28)

where ||∆δe||2,max = ||δef ||2+||δe0||2 is the largest possible
relative eccentricity pseudostate. ||∆δe||2,max is used to find
a closed-form expression for ||∆δe||2, which is otherwise
analytically intractable due to time-dependent trigonometric
functions in ΦJ2(t). Therefore, a length of control window
tf − t0 that guarantees IP reachability can be found a-priori
as

tf − t0 = 2(∆tδa +∆tδλ +∆tδe), (29)

The sum ∆tδa+∆tδλ+∆tδe is doubled to prevent navigation
errors from producing a control window that is too short for
IP drag-only reachability. This ”2” coefficient is arbitrary
and can be tuned lower or higher depending on the expected
performance of state estimation. For drag-only control, the
proposed architecture modifies the length of the control win-
dow to ensure the desired state is reachable using drag-only
maneuver planning (Alg. 1, Line 2), and the drag-only mode
is initiated by setting the boolean flag DRAG ONLY to true.

5. PROVABLY LYAPUNOV-STABLE CONTROL
Ideal Control

Online control methods commonly define Lyapunov stability
in terms of tracking error for the single, current maneuver to
converge to a desired trajectory. The hybrid control formula-
tion in (10) allows a much simpler interpretation of stability,
converging directly to the desired state or pseudostate-space
origin. However, complete maneuver planning requires sta-
bility guarantees for all future planned maneuvers, instead of
just the current maneuver. This section will establish the Lya-
punov stability of reachable set theory-based hybrid control
(Alg. 1, Lines 6 and 13) under ideal and optimal actuation
and dynamics. The decoupling of drag and propulsive control
resulting from the reachable set theory approach allows each
component of the hybrid solver to be analyzed separately.

Consider a Lyapunov function V proportional to the square
of the IP dominance case δvmin numerator in (13), defined as

V =
1

2

(
ηT∆δα

)T (
ηT∆δα

)
, (30)

where η is the outward normal of the reconfiguration domi-
nance case intersecting ∆δα at optimal cost as illustrated in
Fig. 1. V is radially unbounded, positive definite, continu-
ously differentiable, and, as a function of the reconfiguration
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pseudostate, remains constant when the deputy is not ma-
neuvering. Additionally, η is property of the reconfiguration
and, like the pseudostate, is invariant. This implies that no
optimal maneuver will cause the reconfiguration dominance
case to change to another dominance case candidate, such
that the δvmin for the reconfiguration dominance case will
always be greater than the δvmin for the other dominance
case candidates throughout the reconfiguration. Therefore,
decreasing the reconfiguration dominance case δvmin to zero
must also decrease the other dominance case candidate δvmin
to zero, and the entire reconfiguration is completed even if
η contains one or more zeros. The change in V due to an
optimal maneuver ui at time ti is given from the dynamic
constraint in (10) as

V̇ =
(
ηT∆δα

)T
(
ηT ˙∆δα

)
(31)

=
(
ηT∆δα

)T (
ηT(∆δα− Γ(ti)ui)− ηT∆δα

)
= −

(
ηT∆δα

)T (
ηTΓ(ti)ui

)
.

Koenig and D’Amico showed that ηT∆δα > 0 for an optimal
η, as the minimum cost must be positive [28]. For optimal
propulsion, maneuvers will always act in the pseudostate di-
rection defined by η to decrease and minimize the remaining
IP reconfiguration cost. Therefore, ηTΓ(ti)ui > 0 and V̇ is
negative definite. The origin of pseudostate space, and the
desired state at the end of the control window, is globally
asymptotically Lyapunov stable for ideal optimal propulsive
control.

For optimal differential drag, the offline maneuver planning
approach of the reachable set solver (Alg. 1, Lines 6 and 13)
ensures that the differential drag maneuver plan in its entirety
optimally minimizes the IP propulsive minimum cost of
the reconfiguration. However, unlike propulsive maneuvers,
each individual differential drag maneuver is not required
to greedily decrease the remaining IP reconfiguration cost
as a condition of optimality, as drag is a zero or negligible
cost maneuver and is not included in the cost function in
(10). Therefore, V̇ is negative semi-definite for ideal optimal
differential drag control.

Asymptotic stability can be verified instead through LaSalle’s
Invariance Principle Theorem [32]. Let D be the set of
pseudostates within a γ-level set of V , defined as

D = {∆δα : V (∆δα) ≤ γ}. (32)

It is worth noting that the reachable sets defined by S∗ in
(12) are also level sets of the linearly scaling cost c, and
D is almost equivalent to S∗, having the same shape but
defined instead by the proportional square of minimum cost.
V̇ from (31) is negative semi-definite under ideal optimal
drag maneuvering for all ∆δα ∈ D, such that D is forward
invariant. Let E be the set of all states in D where V̇ = 0,
given as

E = {∆δα ∈ D,ui : V̇ = 0} (33)

= {∆δα = 0,ui = 0,ηTΓ(ti)ui = 0}.

E contains the origin when the reconfiguration is achieved,
the non-maneuvering deputy, and maneuvers that do not
change the IP dominance case δvmin. Let N be the largest
set of invariant states in E, given as

N = {∆δα ∈ E : ˙∆δα = 0} = {∆δα = 0,ui = 0}. (34)

N contains the achieved reconfiguration and the non-
maneuvering spacecraft. Therefore, the origin of pseudostate
space is globally asymptotically stable under ideal optimal
differential drag control.

Error Bounds on Lyapunov Stability

The purpose of Alg. 1 is to reject all forms of real-world
error that deteriorate hybrid control performance. The sta-
bility requirements within Lyapunov’s Second Method and
LaSalle’s Invariance Principle Theorem enable convergence
bounds to be placed on the error relative to the optimal
maneuver plan and provide intuition on the best dynamic
modeling feedback approach (Alg. 1, Lines 7-16). Consider
an arbitrary general positive scalar error term ϵ for any non-
ideal maneuver ũi in the hybrid maneuver plan, such that
ηTΓ(ti)ũi = ηTΓ(ti)ui ± ϵ. Throughout this paper, quanti-
ties denoted with a tilde are associated with realized in-flight
values under typical operational errors corresponding to ideal
non-tilde values used on-board in maneuver planning. In this
section, ϵ captures both maneuver and dynamic modeling
error in a single term. Substituting the non-ideal maneuver
into V̇ in (31) results in

V̇ =
(
ηT∆δα

)T (±ϵ− ηTΓ(ti)ũi

)
. (35)

The error bound for stable convergence can be established
by examining the effect of ϵ on the change in optimal cost,
defined as

ηT ˙∆δα =± ϵ− ηTΓ(ti)ũi ≤ 0, (36)

±ϵ ≤ ηTΓ(ti)ũi. (37)

Two error bounds can be derived from the positive and nega-
tive errors by resubstituting the definition±ϵ = ηTΓ(ti)ũi−
ηTΓ(ti)ui. +ϵ provides a lower bound for convergence,
given as

ϵ = ηTΓ(ti)ũi − ηTΓ(ti)ui ≤ ηTΓ(ti)ũi, (38)

ηTΓ(ti)ui ≥ 0, (39)

while −ϵ provides an upper bound for convergence, given as

−ϵ = −(ηTΓ(ti)ũi − ηTΓ(ti)ui) ≤ ηTΓ(ti)ũi, (40)

ηTΓ(ti)ui ≤ 2ηTΓ(ti)ũi, (41)

and combining (39) and (41) results in the constraint

0 ≤ ηTΓ(ti)ui ≤ 2ηTΓ(ti)ũi. (42)

In words, the proposed re-solve architecture, Alg. 1, will
asymptotically converge if the on-board modelled optimal
maneuver effect on the IP minimum cost in the generic
reachable set solver (Alg. 1, Lines 6 and 13) is no more than
double the effect of the actual, realized maneuver. Relating
to traditional control techniques, the lower bound in (39) is
analogous to underdamped control, with iterative overshoot
corrections over the control window, and the upper bound in
(41) is analogous to a bound on overdamping, where the re-
solve architecture will no longer approach the desired final
state due to undershoot.

6. PRIMARY SOURCES OF MODELING ERROR
The re-solve architecture is designed to meet the stability
constraint posed in (42) by modifying the inputs or resulting
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maneuver plan outputs of the hybrid control problem (Alg.
1, Lines 6 and 13), instead of requiring a specialized reach-
able set-based solver with a unique derivation of Lyapunov
stability that loses generality. Dynamic modeling inaccu-
racies are produced in-flight from a variety of solver input
and output sources, including uncertain navigation, non-ideal
hardware, highly variable environmental parameters, and the
LTV model of relative spacecraft motion itself. The primary
sources of error for hybrid control are listed here and orga-
nized into two categories, linear and nonlinear, based on their
effects on the output final ROE state at the end of the control
window. These categories will determine how the various
errors are analyzed in further sections.

The propulsive linear errors are magnitude errors, driven by
thruster imperfections and differences between ground testing
and flight performance. Linear differential drag errors are
also magnitude errors caused by the augmented differential
ballistic coefficient ∆Bρ. Errors in ∆Bρ are primarily
produced from inaccurate atmospheric density modelling, but
also can result from poor characterization of the spacecraft’s
coefficient of drag or poor attitude determination and control
of the spacecraft’s cross-sectional area. Both types of magni-
tude error cause a linear scaling of the resulting reachable
set for the maneuver, as a change of the linear variable
ui in the constraint of (10). Navigation uncertainty in the
initial relative state between the chief and deputy effects the
pseudostate of the reconfiguration problem, as a change of the
linear variable δα0 in (9), and causes a linear translation of
the desired state in pseudostate-space.

For nonlinear error effects, inaccurate maneuver timing af-
fects both propulsive and differential drag control through
the translation of software commands to hardware actuation.
Propulsive timing delays can also result from the ramp-up or
activation of the thruster as well as differences between the
impulsive-approximated maneuver and the actual thrust curve
achieved by the thruster. Differential drag timing delays can
be produced by the difference between the instantaneous-
approximated attitude changes and the actual rotational dy-
namics of the spacecraft. Directional inaccuracies also cause
nonlinear effects, with propulsive errors caused by attitude
determination and control and differential drag errors result-
ing from the shared RTN frame approximation between the
chief and deputy. All of these nonlinear maneuvering effects,
excluding errors in propulsive maneuver direction, cause the
resulting reachable set to warp in shape. Propulsive direction
errors, holding maneuver cost and time constant, will cause
no change in reachable set shape, as all variations of viable
maneuver direction are already captured in the creation of
the reachable sets. Navigation uncertainty in the absolute
Keplerian state nonlinearly affects both the reconfiguration
pseudostate and the effect of each maneuver, causing both
a translation of the desired state in pseudostate-space and a
warping of the reachable sets.

Finally, two inherent flaws exist in the previous Lyapunov
analysis. Closed-form maneuver planning algorithms based
on reachable set theory are not always guaranteed to output an
optimal maneuver plan, given potential dynamic coupling be-
tween the 2D planes (i.e. IP/OOP ROE coupling). However,
the solver will find the lowest cost within the closed-form
approach to ensure near-optimality for all output maneuver
plans. These plans can be considered ”approximations” of
the true optimal maneuver plan, caused by magnitude errors
that linearly scale the reachable sets and nonlinear differ-
ences in maneuver direction and timing within the solver.
Additionally, the Lyapunov formulation uses the reconfig-

uration pseudostate as its state vector, implying the ROE
LTV dynamics model perfectly captures relative spacecraft
motion. This is not the case, as the full model is loses
accuracy at larger separations and neglects lower order orbital
perturbations to Keplerian motion, producing small, minor
inaccuracies. These approximations allow generic reachable
set-based solvers of (10) within Alg. 1 to be covered by the
same Lyapunov formulation. Both resulting errors are diffi-
cult to quantify and decouple from other parameters of the
control problem, such as initial and final state, the length of
the control window, and the exact reachable set-based solver.
However, neither error source is expected to significantly
effect the performance of the re-solve architecture, and they
are not considered in the following error covariance analysis.

7. COVARIANCE SENSITIVITY ANALYSIS
The uncertainty of each error source can be quantified and
translated to the achieved final state using a covariance sensi-
tivity analysis to produce experimental performance metrics.
Comparing these performance metrics will inform the robust
control strategy of Alg. 1, by conditioning the inputs and
outputs of the reachable set-based solver (Alg. 1, Lines 6
and 13) with buffer functions (i.e. scale factor, min/max
bounds) that ensure stable convergence. This section extends
the analysis approach proposed by Chernick and D’Amico
for propulsive control to hybrid control [10]. Matching the
distinction made while identifying the primary sources of
error in hybrid control, linear error effects are derived an-
alytically, while quantifying nonlinear error effects requires
numerical methods. Throughout this section, arbitrary errors
are given as a scalar ϵ or vector ϵ to produce the non-ideal
maneuver planning quantity, denoted as in previous sections
by a tilde. The source of the error is identified by the
subscript of ϵ. All error sources are modelled as a zero mean
multi-variate Gaussian distribution with diagonal covariance
matrix COV ϵ = diag(σ1, σ2, ..., σn) for an nD state with
associated standard deviations σi.

Analytical expressions for the linear effects are derived by
separating the resulting final state into ideal and error com-
ponents. Considering a general maneuver magnitude error
formulation ũ||.||2 = (1 + ϵ|u|)u and initial relative state
error formulation δ̃α0 = δα0 + ϵδα0

, the dynamics model
from (10) is expanded and formulated as

δαf = ΦJ2(t0) ˜δα0 +

k∑
i=1

Γ(ti)ũ||.||2,i. (43)

This expression is split into the ideal final state δαideal
f and

final state error δαϵ
f , given as

δαf = δαideal
f + δαϵ

f , (44)

δαideal
f = Aδα0δα0 +Aprop +Adrag, (45)

δαϵ
f = Aδα0ϵδα0 +Apropϵ||uprop

i ||2 +Adragϵ||udrag
i ||2 , (46)

with the substitutions Aδα0 = ΦJ2(t0), Aprop =∑k
i=1 Γ(ti)C

propui and Adrag =
∑k

i=1 Γ(ti)C
dragui where

Cdrag = [03, I3]. δαf is a weighted sum of different Gaus-
sian distributions and, assuming that the errors considered
by this analysis are independent, is itself a Gaussian with
mean δαideal

f . The resulting uncorrelated effect of each error
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source on the δαf can be found independently by linearly
transforming the covariance of the error source, given as

COV δαf
= A[COV ϵ]A

T, (47)

with the applicable A for each error source.

Analytical expressions are not possible for the nonlinear
covariance effects, requiring the use of numerical methods.
Considering a general maneuver timing error formulation
t̃ = t + ϵt, maneuver direction error formulation ũ∡ =
Rz(ϵ∡u,1)Rx(ϵ∡u,2)Rz(ϵ∡u,3)u using a 3-1-3 Euler angle
rotation with rotation matrix R and three distinct error angles,
and initial absolute state error formulation α̃c = αc + ϵαc ,
the resulting dynamics model is formulated as

δαf = Φ̃
J2
(t0)δα0 +

k∑
i=1

Γ̃(t̃i)ũ∡,i, (48)

where Γ̃(t) = [Φ̃
J2
(t)B̃(t),

∫ ti+1

ti
Φ̃

J2
(t)B̃(t)dt], Φ̃

J2
(t) =

ΦJ2(α̃c(t), tf − t), and B̃(t) = B(α̃c(t)). Again assuming
that the errors considered by this analysis are independent,
Gaussian Monte Carlo samples are taken for a single non-
linear error source and converted to δαf . By law of large
numbers, the covariance of a sufficiently large number of
samples will converge to the true COV δαf

for that error
source.

The on-diagonal terms of COV δαf
are the independent

squared standard deviation of each ROE, but in the presence
of non-zero off-diagonal terms, standard deviation is insuffi-
cient to establish performance metrics or confidence bounds.
For completeness, the uncertainty coupling effects between
the ROE need to be quantified. The Gaussian error model is
leveraged to find a nD confidence bound ellipsoid, defined in
shape by the covariance matrix COV δαf

and scaled by the
desired critical value of the chi-square cumulative distribution
function. The performance bounds are taken at the nD
ellipsoid maxima, the maximum projection of the ellipsoid
on each dimension, as a worst-case conservative value. As
stated by Chernick and D’Amico, this can be interpreted as
fitting an nD polygon, representing the performance metrics,
to the desired confidence bound nD ellipsoid such that the
polygon is centered at the mean, defined here as δαideal

f , and
tangent to the nD ellipsoid at its maxima [10].

To find these ellipsoid maxima, first consider an nD unit
spheroid. Any point on this unit spheroid can be linearly
transformed to an equivalent point on a nD ellipsoid, such
that the transformation matrix T between a covariance ellip-
soid and unit spheroid is defined as COV δαf

= TT T [10].
Fig. 2 illustrates this transformation for a 2D plane, using
coordinates x1 and x2 and transforming the points on the unit
sphere that match the locations of the coordinate basis vectors
ê1 and ê2.

Given that a valid covariance matrix is positive semi-definite
and full rank, the eigendecomposition of the covariance ma-
trix results in diagonal eigenvalue matrix λ and eigenvector
matrix v where column i in v is the eigenvector vi corre-
sponding to eigenvalue λi in column i and row i of λ. The
eigendecomposition can be rearranged to realize the trans-
formation matrix from the unit spheroid to the covariance
ellipsoid, derived as

COV δαf
= vλvT = vλ1/2[vλ1/2]T = TT T. (49)

Figure 2. Points on a 2-dimensional unit sphere centered on
the origin (left) can be translated to a 2-dimensional ellipsoid
centered on the origin (right) using transformation matrix T .

This transformation is shown for points on the unit sphere
that coincide with the x1 and x2 axes.

Figure 3. Performance metrics bi = biêi on 2-dimensional
confidence bound ellipsoid (left), inversely transformed to

points on a unit sphere (center), and transformed back to the
confidence bound ellipsoid (right).

Now consider scaling COV δαf
and the corresponding T

by the chi-square critical value χ2 for the desired cumulative
probability and the degrees of freedom of the state, resulting
in an ellipsoid that represents the desired confidence bound.
The transformation matrix from a unit spheroid to the confi-
dence bound ellipsoid is given as

T = 2χvλ1/2. (50)

As worst-case conservative values, each performance metric
bi = biêi corresponds to a hyperplane defined by the basis
vector êi of the corresponding dimension and tangent to the
confidence bound ellipsoid at its maxima bi. Fig. 3 visually
illustrates the following process used to formulate these bi
analytically.

Focusing on the alignment with the basis vector, consider
transforming an ellipsoid maxima to its corresponding point
on the unit spheroid T−1biêi. This point can equivalently
be expressed as the normalized column i of T−1 because this
column completely defines the direction of transformed maxi-
mum on the unit spheroid. Therefore, the performance bound
on each dimension i can be easily found by transforming this
simplified expression of the spheroid point back to a point on
the ellipsoid, given as

bi =
TT−1êi

||T−1êi||2
. (51)

8. HYBRID ERROR ANALYSIS
The covariance uncertainty analysis detailed in the previous
section is conducted for three different reconfigurations. Each
reconfiguration involves a different IP dominance case candi-
date to ensure the analysis covers all variations of the optimal
differential drag profile. These three reconfigurations are
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defined for a 100 orbit control window, given as

αc(t0) = [a e i Ω ω M ] (52)
= [6798km 0.001 51◦ 30◦ 200◦ 45◦] , acδαf

acδα0,δa
acδα0,δλ
acδα0,δe

=
 0 5 0 1 0 1

0.8 150 0.55 0.85 −0.05 0.95
−0.02 100 0.5 0.9 0.05 0.95
0.02 50 0.1 1 −0.05 0.95

km,

(53)

where subscripts δa, δλ, and δe denote initial conditions for
the associated dominance case. The generic reachable set-
based solver (Alg. 1, Lines 6 and 13) chosen to produce
maneuver plans for this analysis is a hybrid solver designed
in previous work by the authors, which produces provably-
optimal hybrid control solutions in closed-form [29]. To give
context on the balance between propulsive and drag control
in these reconfigurations, the δa dominant reconfiguration
saves 0.1323m/s of δv cost with hybrid control over propul-
sion alone, solved from (17), and requires a total IP δv of
0.4506m/s, found by subtracting (17) from (14). The δλ
dominant reconfiguration saves 0.0666m/s of δv cost with
hybrid control over propulsion alone, solved from (18), and
requires a total IP δv of 0.0592m/s, found by subtracting (18)
from (15). The δe dominant reconfiguration saves 0.0831m/s
of δv cost with hybrid control over propulsion alone, solved
from (19), and requires a total IP δv of 0.1083m/s, found by
subtracting (19) from (16). As mentioned previously, each
error source will be modelled as a zero-mean Gaussian, and
the standard deviations σ for each error source are given in
Table 1.

Table 1. Standard deviations associated with the Gaussian
model of each hybrid error source. Superscripts ”prop” and

”drag” are added to the associated maneuver errors.

Linear Sources Nonlinear Sources
ϵ σ2 ϵ σ2

|uprop
i | 0.052 (m/s)2 tprop

i , tdrag
j 602 s2

|udrag
j | (5× 10−12)2 (m/s)2 ∡uprop

i 12 (◦)2

∡udrag
j 52 (◦)2

δx0 0.012 m2 x0 12 m2

δẋ0 0.0012 (m/s)2 ẋ0 0.012 (m/s)2

The uncertainties associated with propulsive maneuver mag-
nitude and direction and overall maneuver timing are based
on typical operational errors resulting from thruster firing and
attitude control. The absolute and relative navigation errors,
x0 and δx0, are given element-wise in the 6D Cartesian
frame (Earth-Centered-Inertial for absolute state, RTN for
relative state) to match the general performance found in
the literature [33]. To incorporate Cartesian values into (5),
a preliminary Gaussian Monte Carlo analysis is conducted.
Each sample nonlinearly converts αc(t) or acδα into the
equivalent cartesian frame, generates and adds the applicable
random Gaussian error, and converts new quantity back into
its original frame. Again by law of large numbers, the co-
variance of these samples will converge to the true Keplerian
orbital element and ROE covariance associated with navi-
gation. Drag maneuver magnitude uncertainty is primarily
caused by inaccurate atmospheric density modelling, which
can vary by an order of magnitude in LEO. This analysis
conservatively sets the 2σ bound at 10−12kg/m3, with the
matching σ value in Table 1. Finally, the error in the direction

Table 2. Resulting maximum final state covariances from
covariance analysis of hybrid maneuver plans solved for
each IP dominance case candidate. Each error source is

analyzed independently.

ϵ max(diag(COV δαf
))1/2 [km]

Dominance Case δa δλ δe
|uprop

i | 24.928 2.915 1.273
∡uprop

i 0.181 3.833 3.436
tprop
i 0.052 0.023 0.026

|udrag
i | 1369.220 685.046 7.957

∡udrag
j 1.294 0.668 0.024

tdrag
j 0.023 0.034 0.387
x0 0.004 0.009 0.009
δx0 ∼ 10−7 ∼ 10−7 ∼ 10−7

of drag maneuvering is derived from the assumption that the
chief and deputy share the chief’s RTN frame. This error can
exceed 8◦ at along-track separations of 1000km. Therefore,
the 2σ bound is set conservatively again at 10◦, resulting in a
variance of 5◦.

The covariance analysis for each error source applies the
corresponding Gaussian distribution defined in Table 1 to the
applicable term in the dynamics constraint given in (43) or
(48). For the linear errors, the final state covariance is given
by solving (47). For the nonlinear errors, independent errors
are sampled for each planned maneuver to find the resulting
final state for each Monte Carlo sample. The final state co-
variance is the covariance of the final state samples. As men-
tioned before, the covariance analysis is conducted for each
error source separately and only the resulting covariances
are reported, as the linear transformation of a zero-mean
Gaussian will always result in a zero-mean Gaussian. The
performance bound for each reconfiguration can be found by
solving (51) with the corresponding final state covariance and
a chi-squared cumulative probability of 95%. The covariance
analysis and worst-case performance bound results are shown
in Tables 2 and 3, where worst-case performance bounds are
defined as the maximum bound for each dimension across the
three reconfigurations.

Unlike the conclusions made by Chernick and D’Amico for
propulsive-only control, the long control windows typical for
hybrid control exacerbate the effect of nonlinear uncertainty
sources on the final state covariance and confidence bound

Table 3. Resulting performance bounds from covariance
analysis. Worst-case values are taken as largest bound for

each dimension over all IP dominance case candidates. Each
error source is analyzed independently.

ϵ Worst-Case ROE Performance Bounds bi [m]
|uprop

i | [ 201 176,915 68 45 18 346 ]
∡uprop

i [ 42 27,203 12 53 23 44 ]
tprop
i [ <1 369 17 190 77 24 ]
|udrag

i | [20,608 9,717,412 12,625 3,472 <1 15,842]
∡udrag

j [ 19 9,184 34 55 41 25 ]
tdrag
j [ 5 2,749 1 5 <1 4 ]
x0 [ <1 61 10 64 31 9 ]
δx0 [ <1 <1 <1 <1 <1 <1 ]
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[10]. With the exception of relative state navigation, all
primary hybrid control errors considered here result in a
significant deterioration of the final state accuracy, and gen-
eral nonlinear error effects cannot be considered negligible
with respect to linear error effects. However, the results
do show that the largest contributor to final state error, by
orders of magnitude, is the magnitude error of differential
drag maneuvers, driven by uncertainty in the atmospheric
density. Considering the differential drag magnitude errors
in isolation, the bounds for Lyapunov stability given in (42)
can be simplified to

0 ≤ ρ̄c ≤ 2˜̄ρc, (54)

where ρ̄c is the average atmospheric density modelled by
the generic reachable set-based solver (Alg. 1, Lines 6 and
13) over the planned maneuver, and ˜̄ρc is the actual time-
integrated average of the density over a given drag maneuver.
This constraint can be met by a simple tuning variable scalar
within Lines 5 and 12 of Alg. 1, posed as

ρ̄c = cρρ̄c,model, (55)

with coefficient cρ on the time-averaged density from the on-
board atmospheric density model ρ̄c,model. Assuming that
a lower bound can be placed on the value of atmospheric
density at a given altitude, asymptotic Lyapunov stability
can be guaranteed for the proposed re-solve architecture if
the atmospheric density for differential drag maneuvers used
by the solver (Alg. 1, Lines 5 and 12) is no higher than
double the lower bound. However, recall that Alg. 1 only re-
solves the drag maneuver plan and requires drag to reject the
other errors present in hybrid control. The most robust and
simple strategy to ensure asymptotic Lyapunov convergence,
while maintaining hybrid cost savings, is to model the effect
of differential drag maneuvers using the lower bound for
atmospheric density.

9. VALIDATION AND EXPERIMENTATION
The validity of the proposed re-solve architecture and ap-
proach towards on-board modelled atmospheric density is
demonstrated in this section for the SWARM-EX mission.
SWARM-EX will study theromspheric and ionoshperic ac-
tivity in LEO with a novel three 3U CubeSat swarm. Each
identical spacecraft uses magnetorquers and reaction wheels
for zero-propulsion 3-axis attitude determination and control
and a single cold gas propulsion thruster for translational rel-
ative motion control. For the purposes of differential drag, the
spacecraft are modelled to have a mass of 6kg, a coefficient of
drag of 1.5, and a cross-sectional area between 0.01 - 0.09m2,
bounded by the dimensions of a 3U CubeSat solar panel
array. These simulations will use two of the spacecraft in this
swarm for simplicity, without loss of generality. The chief is
assigned arbitrarily among the three identical spacecraft and
is assumed to have the following initial mean orbital element
state at the beginning of each simulation

αc = [a e i Ω ω M ] (56)
= [6798km 0.003 51◦ 200◦ 70◦ 45◦] .

The spacecraft are propagated by a 4th-order Runge-Kutta
integration of the GVE over a 10s time step for propulsive-
only and hybrid control, tailoring different perturbation mod-
els to the goals of each validation analysis. The propagation
time step is increased to 40s for drag-only control, due to
the significantly longer control windows required for drag in-
plane reachability. Attitude constraints, such as Sun-pointing

to remain power positive and Earth-pointing for atmospheric
measurements, are neglected for simplicity, as they create
a time dependency in the ∆Bρ bounds that do not affect
the optimal drag maneuvers resulting from the reachable set
theory analysis of the hybrid control problem in (10).

Two different reconfiguration scenarios will be considered
for validation. In Reconfiguration 1, the spacecraft will
reconfigure over a smaller inter-spacecraft separation, about
90km, over an 85 orbit control window, defined by the initial
and final mean states[

acδα
1
0

acδα
1
f

]
=

[
0.01 −10 0.09 0.66 0.04 0.77
0 −100 0 0.7 0 0.7

]
km.

(57)
Reconfiguration 1 involves both a large change in δλ, or
along-track separation, and δe, returning to a nominal value
for passively safe formation keeping. In Reconfiguration 2,
the spacecraft will reconfigure over a large inter-spacecraft
separation, about 500km, over a 200 orbit control window,
defined by the initial and final mean states[
acδα

2
0

acδα
2
f

]
=

[
0.125 800 −0.05 0.1 −0.01 0.08
0 1300 0 0 0 0

]
km. (58)

Reconfiguration 2 primarily involves a large change in δλ,
minimally returning the remaining ROE to a nominal zero
value. All control solutions (Alg. 1, Lines 6 and 13) are
generated by the reachable set theory-based hybrid control
solver developed in previous work by the authors, allowing
control solution computation, and the full proposed re-solve
architecture, to run in linear time [29]. This is the same
algorithm used in the previous section to conduct the hybrid
control sensitivity covariance analysis. The architecture is
designed to re-solve the drag maneuver plan every 5 orbits
(∆tre-solve = 5 orbits), and deputies using the differential
drag-only setup will solve their own control window on-board
(Alg. 1, Line 2).

Experimental Bounds on Lyapunov Stability

As a first step, the derived Lyapunov stability bounds on
optimal reachable set theory-based control solutions (Alg.
1, Lines 6 and 13) are verified in S3, a high-fidelity orbit
propagator designed by the Stanford Space Rendezvous Lab
(SLAB) [34]. The validation reconfigurations are repeated
with a variety of cρ values (Alg. 1, Lines 5 and 12),
ranging from 0.01x to 4x the true mean value. To isolate
the convergence of the designed choice of cρ, the simulation
only incorporates perturbations from Earth’s gravity (30x30
gravity model) and atmospheric drag using the NRLMSISE-
00 density model [35]. Ground truth atmospheric density is
held constant, at the value at t0, over the control window,
and all spacecraft maneuver ideally with perfect on-board
density knowledge (ρ̄c,model = ˜̄ρ). Stable convergence is
analyzed through the IP delta-v minimum δvmin,IP, a function
of the current state relative to the final desired state and
directly analogous to the Lyapunov function in (30). δvmin,IP
is found by solving (9) for the pseudostate at a given time
in the control window, with the current state as δα0 and the
current time as t0, and taking the maximum δvmin from (14),
(15), and (16) for the IP dominance case candidates. This
analysis calculates the δvmin,IP at three times in the control
window to illustrate the evolution of δvmin over time. The
δvmin,IP at the first third t1/3 = t0 + 1/3τ and second third
t2/3 = t0+2/3τ of the control window duration τ = tf − t0
will show the convergence properties of each cρ throughout
the control window while avoiding the time-based singularity
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Figure 4. δvmin,IP for Reconfiguration 1 at t1/3, t2/3, and
the last re-solve of the control window, simulated under

gravity and ideal drag. cρ in Alg. 1 Lines 5 and 12 is varied
to verify the derived bounds for Lyapunov stability. δvmin,IP
at t0 is provided in red as the benchmark for convergence.

in (15). The time of the last re-solve, approximately 5 orbits
before the end of the control window, is used to demonstrate
the effect of this singularity and verify convergence for the
complete hybrid maneuver plan. The performance of the re-
solve architecture is compared to the δvmin,IP at the beginning
of the control window t0 where no control has yet occurred.
Fig. 4 and Fig. 5 display the δvmin,IP associated with each
choice of modelled density.

Stable convergence for a value of cρ in Alg. 1, and the
resulting hybrid control solution, is identified as those that
decrease the δvmin,IP from the value at t0. In Reconfiguration
1, Alg. 1 achieves stable convergence for cρ > 2 at all
three times considered, surpassing the derived bound of ρ̄c ≤
2˜̄ρc. For very low values of cρ, Alg. 1 stably converges
to a residual non-zero δvmin that represents the cost of the
remaining IP propulsive maneuvers. These values are similar
at all three times considered, because optimal IP maneuvers
for large changes in δλ occur in the first and last orbit of the
control window, before and after all three considered times.
The effect of the time-based singularity in (15) is evident
for larger values of cρ, causing a spike in δvmin,IP at the last
re-solve. This singularity has a minimal effect on smaller
values of cρ because the optimal cost of Reconfiguration 1
is dominated by the large change in δe. In Reconfiguration
2, Alg. 1 achieves stable convergence for cρ > 2 at t1/3
and t2/3, but not at the last re-solve. This reconfiguration is
primarily a large change in δλ, and the singularity effect in
(15) can be seen over the entire control window, particularly
at the last re-solve. This causes a large increase δvmin at
lower values of cρ that skews the convergence properties of
the full hybrid maneuver plan. Comparing these results to
Reconfiguration 1, the time-based singularity effect of (15)
primarily affects reconfigurations that are already δλ domi-
nant, and does not significantly change the output maneuver
plan or convergence of the proposed re-solve architecture.

Figure 5. δvmin,IP for Reconfiguration 2 at t1/3, t2/3, and
the last re-solve of the control window, simulated under

gravity and ideal drag. cρ in Alg. 1 Lines 5 and 12 is varied
to verify the derived bounds for Lyapunov stability. δvmin,IP
at t0 is provided in red as the benchmark for convergence.

Therefore, the experimental bounds for stable control in this
analysis verify the derived Lyapunov stability bounds in (54).

Robust Performance

The capabilities of the proposed re-solve architecture are
demonstrated in S3 with realistic operational and hardware
errors. The full force simulation environment incorporates
perturbations from Earth’s gravity (30x30 gravity model),
atmospheric drag using the NRLMSISE-00 density model,
solar radiation pressure, and third body effects. The deputy
solves and conducts control on-board with ideal maneuvering
perturbed by the zero-mean Gaussian error models in Table
1, with the exceptions of drag maneuver direction and mag-
nitude. Ideal drag maneuver direction will be perturbed by
inter-spacecraft separation, causing differences between the
chief and deputy’s RTN frames. Ideal drag maneuver mag-
nitude will be perturbed by variations between the on-board
modelled time-average atmospheric density and the variable
ground truth. At the inter-spacecraft separation in Reconfig-
uration 1, spacecraft absolute and relative states are assumed
to be well characterized, and navigation uncertainties match
the model in Table 1. The spacecraft use the NRLMSISE-
00 model as the reference truth on-board, the same model
used as the simulation ground truth. At the inter-spacecraft
separation in Reconfiguration 2, the increased separation is
assumed to deteriorate the state estimation performance, and
navigation uncertainties are taken from Table 1 and increased
by an order of magnitude (10σ or 100σ2). The spacecraft
use the Harris-Priester atmospheric density model on-board,
to simulate differences between the on-board reference truth
density model and the ground truth [36].

The convergence and overall performance of the re-solve
architecture is demonstrated comparatively against a single
solve of the maneuver planning algorithm, conducted at the
beginning of the control window without re-solves to provide
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Table 4. IP cost and final ROE errors for Reconfiguration 1
for various control types and cρ in Alg. 1 Lines 5 and 12
under full force dynamics model, operational errors, and

nominal state estimation.

Alg. 1 IP δv acδαf Error [m]
Drag Model Cost [m/s] acδa acδλ ac||δe||2 ac||δi||2
No Feedback

No drag 0.1226 6 -2,138 6 12
cρ = 1 0.0125 -86 41,143 19 74

Feedback
cρ = 1 0.0123 115 453 120 5
cρ = 0.1 0.1074 -4 561 7 15
cρ = 0.01 0.1223 3 635 3 23

Figure 6. δa plane trajectory for Reconfiguration 1 for
various control approaches and cρ in Alg. 1 Lines 5 and 12

under full force dynamics model, operational errors, and
nominal state estimation.

a baseline to identify convergent control solutions. The
single solve approach is equivalent to using Alg. 1 without
Lines 7-16, the re-solve feedback loop, and is identified
here as ”no feedback” or ”no f.b.” For hybrid control, two
”no feedback” baselines are used to evaluate robustness to
uncertainty and dynamic modelling error. A single solve of
the maneuver planning algorithm for propulsive-only (”no
drag”) control is compared against Alg. 1 hybrid maneuver
planning to demonstrate the ability of the proposed archi-
tecture to achieve superior final state accuracy at a lower
reconfiguration delta-v cost. A single solve of the maneuver
planning algorithm for hybrid control and cρ = 1, compared
against the single solve of propulsive-only control, shows the
deterioration of final state accuracy caused by the inclusion
of differential drag and poor characterization of the time-
variable atmospheric density that Alg. 1 is designed to
mitigate. The re-solve architecture is simulated with a variety
of cρ (Alg. 1, Lines 5 and 12) to understand its behavior
within the bounds of Lyapunov stable control. Tables 4
and 5 display the performance of each control approach for
Reconfiguration 1 and 2, and Fig. 6 and 7 illustrate the
trajectory of each control approach in the δa plane, where
the effects of hybrid control and Alg. 1 are most evident.

The differences in operational errors, namely poor state es-
timation and atmospheric density prediction, are evident in
the results for Reconfiguration 2, where final state errors are
high even for low values of cρ. For both reconfigurations,
the proposed re-solve architecture provides superior δλ final
state accuracy over both propulsive-only and hybrid control
without feedback and achieves roughly equivalent or supe-
rior performance over the entire ROE final state for smaller
values of cρ. Larger, stable values of cρ do not guarantee
decreased final state error across all ROE dimensions because
the Lyapunov stability derived in this paper is proportional
to the δvmin in (13). Deputy trajectories in non-dominant
dimensions may increase in tracking error as long as they

Table 5. IP cost and final ROE errors for Reconfiguration 2
for various control types and cρ in Alg. 1 Lines 5 and 12
under full force dynamics model, operational errors, and

poor state estimation.

Alg. 1 IP δv acδαf Error [m]
Drag Model Cost [m/s] acδa acδλ ac||δe||2 ac||δi||2
No Feedback

No drag 0.4114 -65 -117,758 56 285
cρ = 1 0.0142 6 -457,010 79 673

Feedback
cρ = 1 0.0041 -610 -20,181 117 113
cρ = 0.1 0.1926 -324 -44,798 196 179
cρ = 0.01 0.4073 65 -17,814 90 24

Figure 7. δa plane trajectory for Reconfiguration 2 for
various control approaches and cρ in Alg. 1 Lines 5 and 12

under full force dynamics model, operational errors, and
poor state estimation.

do not increase the minimum cost of the reconfiguration. In
cases where certain dimensions of a reconfiguration require
a high level of precision (i.e. safe separation for collision
avoidance), the desired final state accuracy may be achieved
by decreasing cρ significantly or restricting control to the
plane of interest. Using a smaller cρ in both Reconfiguration
1 and 2 improves performance in the δa and δe final states
but causes a corresponding increase in IP delta-v cost. This
trade-off introduces a simple important tuning element for
control design, adjusting the architecture to prioritize control
accuracy or delta-v cost savings depending on the current
needs of the mission.

For drag-only control, only the IP reconfiguration can be ac-
complished with differential drag control. The performance
of Alg. 1 is evaluated comparatively for various values of
cρ, measuring convergence to the final desired state and the
control window required for modelled drag reachability. For
Reconfiguration 1, cρ = 0.01 results in a control window tf−
t0 of 111,614 hrs (>4,000 days) which is infeasible for a real
mission and difficult to simulate numerically. To demonstrate
the performance of small values of cρ, Reconfiguration 1
will use cρ = 0.05 instead of cρ = 0.01 with half of the
control window given by (29), the sufficient control window
length to send all IP dominance case candidate δvmin to zero
without the buffer for navigation errors. A single solve of
the maneuver planning algorithm for drag-only control is also
included, to demonstrate the proposed re-solve architecture’s
rejection of dynamic modelling errors. Tables 6 and 7 detail
the IP final state errors of Alg. 1 drag-only control for
Reconfigurations 1 and 2, and Fig. 8 and Fig. 9 illustrate the
trajectories in the δa plane, where convergence of drag-only
control is again most evident.

The effect of increased estimation errors is again evident in
the results for Reconfiguration 2, with high final state errors
for low values of cρ. While Alg. 1 can provide superior
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Table 6. Control window length and final IP ROE errors for
Reconfiguration 1 for drag-only control and various cρ in
Alg. 1 Lines 5 and 12 under full force dynamics model,

operational errors, and nominal state estimation.

Alg. 1 Control Window acδαf Error [m]
Drag Model tf − t0 [hrs] acδa acδλ ac||δe||2
No Feedback

cρ = 1 1,336 19 -40,333 1,320
Feedback

cρ = 1 1,336 -217 -107,792 776
cρ = 0.1 11,675 11 114 13
cρ = 0.05* 11,445 -17 848 11
*tf − t0 from (29) halved for feasible simulation length

Figure 8. δa plane trajectory for Reconfiguration 1 for
drag-only control and various cρ in Alg. 1 Lines 5 and 12
under full force dynamics model, operational errors, and

nominal state estimation.

final state accuracy over drag-only control without feedback,
the re-solve architecture does not converge as reliably with
drag-only control as with hybrid control. Drag maneuver
magnitude is the primary source of error in hybrid control,
and drag-only control exacerbates this effect, such that a
larger reconfiguration in a particular ROE dimension may
result in a larger final state error when feedback is not used.
Reconfiguration 1 requires both a large δe and large δλ re-
configuration, and Alg. 1 using cρ = 1 with feedback results
in a lower δe final state error than Alg. 1 without feedback
at the cost of higher δa and δλ errors. Again recall that the
inclusion of feedback in Alg. 1 allows errors in non-dominant
dimensions to increase so long as the reconfiguration optimal
cost does not increase. Reconfiguration 2 primarily requires a
large change in δλ, and the δa and δe final state errors do not
increase significantly when using feedback. Similar to hybrid
control, a trade-off exists between overall final state accuracy
and control window length, where a smaller cρ results in
a longer control window required for drag IP reachability.
As demonstrated previously by the required modifications to
drag-only validation for Reconfiguration 1, control window
length quickly becomes infeasible for low values of cρ. The
drag-only cρ control tuning is therefore functionally limited
at a value much higher than the lower convergence bound.

10. CONCLUSIONS
This paper presents a novel robust architecture for propulsive-
differential drag ”hybrid” control of Distributed Space Sys-
tems (DSS). The architecture leverages atmospheric drag,
modulated by attitude at negligible propulsive cost, to both
reduce the cost of satellite swarm reconfigurations and reject
dynamic modelling errors that deteriorate final state accu-
racy. The algorithm begins with an initial solve of the full
control problem and re-solves the remaining drag maneuver
plan throughout the control window using the current state

Table 7. Control window length and final IP ROE errors for
Reconfiguration 2 for drag-only control and various cρ in
Alg. 1 Lines 5 and 12 under full force dynamics model,

operational errors, and poor state estimation.

Alg. 1 Control Window acδαf Error [m]
Drag Model tf − t0 [hrs] acδa acδλ ac||δe||2
No Feedback

cρ = 1 354 84 -697,272 76
Feedback

cρ = 1 369 -137 -31,101 45
cρ = 0.1 1,232 -70 13,996 129
cρ = 0.01 10,151 27 -52,421 65

Figure 9. δa plane trajectory for Reconfiguration 2 for
drag-only control and various cρ in Alg. 1 Lines 5 and 12

under full force dynamics, operational errors, and poor state
estimation. Each cρ trajectory is split into separate plots for

visual clarity.

estimate. Through a Relative Orbital Element (ROE) param-
eterization, the optimal hybrid control problem is posed in
a Linear Time Variant (LTV) formulation that is compatible
with reachable set theory and generic reachable set-based
solvers. Reachable set theory enables the optimal decoupling
of the propulsive and differential drag control problems and
provides a set of conditions for provable optimality that are
extended in the design of the architecture to prove asymptotic
Lyapunov stability for ideal control. The Lyapunov analysis
also provides error bounds on stability for non-ideal control
which can be enforced within the architecture on the inputs
and outputs of the control solver.

The primary operational error sources of hybrid control are
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detailed, and appropriate Gaussian error models are built for
each source. A covariance sensitivity analysis is conducted
to quantify the effect of each error source on the output ma-
neuver plan and finds that the dominating source of error on
hybrid control is the atmospheric density model. Therefore,
the bounds on Lyapunov stable control can be simplified to
bounds on the modelled time-averaged atmospheric density,
such that the architecture asymptotically converges if the
modelled effect of the maneuver is no greater than twice the
actual effect of the maneuver. Asymptotic stability can be
guaranteed if a lower bound can be placed on the value of
atmospheric density at the altitude of the spacecraft swarm
and is used as the atmospheric density value for control
solutions.

The derived bounds on Lyapunov stability for reachable
set theory-based optimal control are proven experimentally,
applying the proposed re-solve architecture to an orbital
environment perturbed by gravity and atmospheric drag.
Full force simulations of the proposed re-solve architecture
demonstrate its capability to significantly improve final state
accuracy over no feedback maneuver planning approaches,
while still maintaining the cost savings of differential drag.
The performance of the architecture for both hybrid and
drag-only control can be tuned by changing the atmospheric
density used for control solutions. In hybrid control, de-
creasing the modelled density increases final state accuracy,
but also increases IP cost. In drag-only control, decreasing
the modelled density also increases final state accuracy, but
increases the required control window and may require an
infeasible control window length as the modelled density
approaches the lower convergence bound.

Overall, this paper proves the asymptotic Lyapunov conver-
gence of optimal control solvers derived from reachable set
theory. This proof can be leveraged to create a simple re-solve
strategy for robust cost-efficient control of DSS, designed by
assessing the primary sources of dynamic error, analyzing
each error’s effect on final state accuracy, and conditioning
the inputs and outputs of the reachable set-based solver. This
approach is not specific to DSS and can be generalized to any
generic LTV control problem with a norm-like cost function
to achieve stable and provably optimal control despite an
uncertain environment.
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