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CLOSED-FORM OPTIMAL PROPULSIVE-DIFFERENTIAL DRAG
CONTROL FOR LARGE RECONFIGURATIONS OF SPACECRAFT

SWARMS

Matthew Hunter* and Simone D’Amico†

Distributed Space Systems offer unique capabilities but have significant hardware
limitations on computational processing and fuel when employing small satellites.
These constraints drive interest in deterministic maneuver planning that incorpo-
rates orbital perturbations to improve final state accuracy and decrease reconfig-
uration delta-v cost. This paper proposes a novel closed-form, provably opti-
mal framework to generate complete roto-translational solutions for propulsive-
differential drag control of multiple satellites. The approach leverages relative
orbit elements and reachable set theory to characterize all control with a single
methodology that can be readily generalized to generic impulsive-continuous con-
trol. The algorithm is robust to large reconfigurations and extended control win-
dows where differential drag is most effective.

INTRODUCTION

Distributed Space Systems (DSS) have drawn increasing interest from the space community as
their unique capabilities, such as highly variable instrument focal length, robustness through re-
dundancy, and in-flight servicing, have been successfully demonstrated on PRISMA, TanDEM-X,
Orbital Express, and the Mission Extension Vehicle.1, 2 Using smaller, often modular satellites in-
troduces additional complex constraints, chief among them limits in processing power and fuel. The
advantages and constraints of DSS are evident on the Space Weather Atmospheric Reconfigurable
Multiscale Experiment (SWARM-EX) mission, which will use a novel swarm of three 3U Cube-
Sats in Low Earth Orbit (LEO) to take distributed ionospheric and thermospheric space weather
measurements, requiring multiple changes of nearly 1000km in inter-spacecraft separation.3 Such a
mission is not feasible under the limitations of CubeSat propellant, motivating interest in both opti-
mal propulsive maneuvering and the use of environmental forces whose differential effect between
spacecraft can be controlled.

Propulsive maneuvers are often modelled as ”impulsive”, or instantaneous additions of delta-v,
due to their relatively high magnitude and short duration with respect to orbital period. Extensive
literature exists for impulsive control, with approaches that vary widely in applicability and compu-
tational efficiency. The nonlinear dynamics of cartesian relative spacecraft motion often necessitate
numerical optimization techniques such as sequential convex programming, Lie bracket theory, slid-
ing mode control, and differential dynamic programming.4–7 Without proper constraints, numerical
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methods often converge to kinematically sub-optimal continuous control profiles. Integration Con-
stant (IC) states, such as Relative Orbital Elements (ROE), can simplify the dynamics to linear
time variant (LTV) models with minimal loss of accuracy, enabling closed-form maneuver planning
on missions like PRISMA and TanDEM-X.1 In general, impulsive optimal control problems with
norm-like cost functions and LTV dynamics can be solved efficiently through reachable set theory
and, when combined with an ROE parameterization, can produce provably optimal closed-form
solutions for orbits of arbitrary eccentricity under J2-perturbed dynamics.8, 9

The main perturbative force in LEO behind J2 is atmospheric drag, the key motivation of this
work, and modulating differences in DSS spacecraft attitude produces differential drag. Differential
drag cannot usually achieve full state controllability due to strict limits on its magnitude and direc-
tionality and poor on-board characterization of atmospheric density. A desire to guarantee final state
accuracy has resulted in many numerical techniques to incrementally approach a desired formation
without thrust through Linear Quadratic Regulator (LQR), Model Predictive Control (MPC), Pro-
portional Integral Derivative (PID), or nonlinear switching lane formulations.10–14 Focusing instead
on the roto-translational problem, simultaneous attitude stabilization and translational state changes
have been accomplished with dual-quaternion parameterizatons and on spacecraft with a strictly
specialized drag construction, all with provable Lyapunov stability.15, 16 Overall, these control ef-
forts have primarily limited themselves to considering propulsive or differential drag control alone,
often lacking the computational efficiency to be implemented on-board.

In contrast, this paper proposes a provably fuel-optimal, closed-form architecture for LEO prop-
ulsive-differential drag control, also known as hybrid control. The hybrid approach can decrease
the delta-v cost of swarm reconfigurations, as drag maneuvers have little or no propellant cost and
higher-thrust propulsive maneuvers provide the control authority drag lacks. This novel framework
is realized through reachable set theory, demonstrating the ability of a single methodology to pro-
duce closed-form provably optimal control solutions for multiple methods of control, and results
in two major contributions to the state of the art. First, the full hybrid architecture represents the
first ever complete framework for provably optimal hybrid DSS maneuver planning, in an approach
that can be easily extrapolated to generic impulsive-continuous LTV control systems. Second, the
reachable set theory analysis of hybrid control is leveraged to characterize optimality, increase final
state accuracy, and improve computational efficiency for extended control windows and large recon-
figurations in near-circular orbit. The hybrid architecture is presented in three major sections. First,
reachable set theory identifies optimal maneuver times and directions for both types of actuation for
the overall hybrid problem. Second, algorithms are designed to produce roto-translational maneu-
ver plans for reconfigurations of arbitrary size and duration, with the computational efficiency to be
used on-board CubeSats. Finally, optimality, computational efficiency, and final state accuracy are
verified against numerical and closed-form approaches in a high fidelity full-force orbital simulation
that propagates the Gauss Variational Equations (GVE) for all relevant LEO perturbations.

PROBLEM DEFINITION

State Representation

This paper considers the relative motion between a chief (a non-maneuvering spacecraft or ref-
erence orbit) and a deputy spacecraft, indicated by the subscripts c and d respectively. The relative
motion and control actions of the deputy with respect to the chief are commonly represented in
cartesian frames, primarily Radial-Tangential-Normal (RTN). RTN is defined from the spacecraft’s
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center of mass and points radially outward from the Earth’s center of mass, normally along the angu-
lar momentum vector, and tangentially in the direction of motion to complete the right-handed triad.
Spacecraft relative motion can be equivalently expressed in ROE, an advantageous IC state, to ap-
proximate nonlinear cartesian dynamics through linear models.1 This work uses quasi-nonsingular
ROE, valid for inclined orbits of arbitrary eccentricity, defined as

δα =



δa
δλ
δex
δey
δix
δiy

 =



∆a/ac
∆u+∆Ωcos ic

ed cosωd − ec cosωc

ed sinωd − ec sinωc

∆i
∆Ωsin ic

 (1)

where ∆ is a difference in the associated quantity between the chief (subscript c) and deputy (sub-
script d), δa is the relative semi-major axis, δλ is the relative mean longitude, δex and δey are the
components of the relative eccentricity vector δe, δix and δiy are the components of the relative
inclination vector δi, u = M + ω is the mean argument of latitude, and a, e, i, Ω, ω, and M are
the Keplerian orbital elements. Mean ROE, derived from the mean Keplerian orbital elements, are
constant and equivalent to the IC of the Hill-Clohessy-Wiltshire (HCW) and Yamanaka-Ankersen
(YA) differential equations of spacecraft relative motion at small separations in unperturbed Keple-
rian orbit and vary slowly in the presence of perturbations. A State Transition Matrix (STM) can
incorporate the primary perturbations to Keplerian orbit and their corresponding effects on ROE in
closed-form and propagate them over a desired time interval. This work uses an STM that includes
corrections for J2 for mean ROE in near-circular orbit, given as

ΦJ2(t) = ΦJ2(αc(t), tf − t) =



1 0 0 0 0 0

ΦJ2
21 1 0 0 ΦJ2

25 0
0 0 cos(ω̇c(tf − t)) − sin(ω̇c(tf − t)) 0 0
0 0 sin(ω̇c(tf − t)) cos(ω̇c(tf − t)) 0 0
0 0 0 0 1 0

ΦJ2
61 0 0 0 ΦJ2

65 1


(2)

with the following simplifying substitutions

ηc =
√

1− e2c , κc =
3

4

J2R
2
E

√
µ

a
7/2
c η4c

, ω̇c = κc(5 cos
2(ic)− 1) (3)

ΦJ2
21 = −(

3

2
nc +

7

2
κc(1 + ηc)(3 cos

2(ic)− 1))(tf − t)

ΦJ2
25 = −κc(4 + 3ηc) sin(2ic)(tf − t) , ΦJ2

61 =
7

2
κc sin(2ic)(tf − t) , ΦJ2

65 = 2κc sin
2(ic)(tf − t)

where αc(t) are the mean Keplerian orbital elements at time t, tf is the end of the control win-
dow, n is the mean motion, and ΦJ2

i,j(t, tf ) is the element in the ith row of the jth column.17 The
near-circular assumption naturally follows from the focus on LEO spacecraft and their minimally
eccentric orbits.

The control input matrix B transforms RTN maneuvers to changes in osculating or approximately
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mean ROE in near-circular orbit, defined as

B(t) =
1

acnc

0 −2 sinuc − cosuc 0 0
2 0 2 cosuc 2 sinuc 0 0
0 0 0 0 cosuc sinuc

T

(4)

where B(t) = B(αc(t)) and n is the mean motion.1 It is important to note that B decouples
in-plane (IP) control (radial and tangential maneuvers with δa, δλ, and δe states) and out-of-plane
(OOP) control (normal maneuvers with δi states) as a product of linearization. The dynamics model
of relative spacecraft motion can be posed as

∆δα = δαf −ΦJ2(t)δα0 =

∫ tf

t0

ΦJ2(t)B(t)u(t)dt (5)

where ∆δα is the pseudostate of the reconfiguration, defined by initial state δα0 at t0 and final
desired state δαf at tf , and the RTN actions u(t) occur in the reconfiguration control window
[t0, tf ]. It is worth mentioning here that ΦJ2 , unlike B, produces IP/OOP state coupling that scales
linearly with propagation time tf − t, and this interaction will be discussed in later sections.

Differential Drag

The force of atmospheric drag on a single spacecraft is modelled in RTN as

pdrag =
[
0 1

2ρv
2CDA

m 0
]T

=
[
0 1

2ρn
2a2B 0

]T
(6)

where ρ is the atmospheric density, v = na approximates spacecraft tangential velocity in near-
circular orbit, CD is the spacecraft’s coefficient of drag, A is the cross-sectional area, m is the
spacecraft’s mass, and B = CDA

m defines the spacecraft’s ballistic coefficient. The magnitude of
atmospheric drag is inversely correlated to spacecraft altitude, such that differential drag is most
effective and a viable actuator in LEO. This motivates this work’s overall focus on LEO spacecraft
and the corresponding near-circular assumption. Differential drag is modelled as a control force in
RTN as

udrag(t) = pdrag
c (t)− p

drag
d (t) =

[
0 1

2n
2
ca

2
c∆Bρ(t) 0

]T
(7)

where ∆Bρ(t) = ρc(t)Bc(t) − ρd(t)Bd(t) defines the augmented differential ballistic coefficient.
∆Bρ is primarily bounded by the chief and deputy’s minimum and maximum cross-sectional area.
Given the nature of formation flight, the chief and deputy are assumed to be in close orbits and
share the chief’s n, a, and RTN frame, since RTN orientation varies by less than 1◦ for along-track
separations up to 100km. This simplifies the drag force to a tangential-only maneuver. It is noted
here that errors introduced by this model can be compensated by MPC, and this approach will be
elaborated on briefly in the conclusions.
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Optimal Hybrid Control Problem

The most compact description of the reconfiguration control problem addressed by this paper is
given by

minimize
k∑

i=1

∥Cui∥2 (8)

subject to ∆δα =
k∑

i=1

Γ(ti)ui

for ti ∈ [t0, tf ]. ∆δα is derived from the reconfiguration dynamic constraint in Eq. 5 and is in-
variant with respect to the control problem. Control inputs ui = [u

propulsive
i ;u

drag
i ] concatenate

both forms of control in the RTN frame into a single vector. Assuming the spacecraft has a single
propulsive thruster and uses no propulsion to control attitude, the cost function sums the L2-norm of
each propulsive action, isolated by selector matrix C = [I3,03] where I3 and 03 are the 3rd-order
identity and zero matrices. Deviations from the drag maneuver plan for propulsive maneuvering
are short in duration with respect to the control windows relevant for hybrid control. Therefore,
the roto-translational constraints between propulsion and drag maneuvers are neglected, such that
both maneuver types can be conducted independently and simultaneously. The auxiliary matrix
Γ(ti) = [ΦJ2(ti)B(ti),

∫ ti+1

ti
ΦJ2(t)B(t)dt] translates propulsive maneuvers, approximated as im-

pulsive maneuvers of unbounded magnitude, at time ti and analytically integrates differential drag
maneuvers held constant over time step [ti, ti+1] to pseudostate space. The control window [t0, tf ]

is discretized into k time steps, such that
∑k

i=1(ti+1 − ti) = tf − t0.

REACHABLE SET THEORY

This work uses reachable set theory to identify minimum reconfiguration costs and optimal ma-
neuver times geometrically as a analytical function of spacecraft state. The following summarizes
the approach for a single control source. Let U(c, t) be the set of control actions u in the RTN frame
with a norm-like cost no greater than c at time t. Let S(c, t) be the set of pseudostates ∆δα that can
be reached by a single action u ∈ U(c, t) under the dynamic constraint in Eq. 5, given as

S(c, t) = {∆δα : ∆δα = ΦJ2(t)B(t)u,u ∈ U(c, t)} (9)

Let S(c, T ) be the set of ∆δα that can be reached by a single control action of cost no greater than
c within the control window. Finally, let S∗(c, T ) be the set of ∆δα that can be reached by a set
of k ≥ 1 control inputs of combined cost no greater than c taken within the control window. Given
that the cost of a control action scales linearly with its magnitude and ΦJ2(t)B(t)uj ∈ S(c, T ),
S∗(c, T ) can also be formulated as a linear combination of the ∆δαj in S(c, T ) normalized by the
combined cost of the control actions, given as

S∗(c, T ) = {∆δα : ∆δα =

k∑
j=1

ĉj∆δαj ,∆δαj ∈ S(c, T ), ĉj ≥ 0,

k∑
j=1

ĉj = 1} (10)

which demonstrates that S∗(c, T ) is the convex hull of S(c, T ). The cost that scales S∗(c, T ) such
that its boundary contains ∆δα is the minimum cost δvmin for the reconfiguration.
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This formulation enables several important observations about optimal control.9 First, a 2n-
dimensional (2nD) reconfiguration can be broken down into n 2D planes, such that the 2nD recon-
figuration δvmin is equal to or greater than the highest δvmin within an isolated 2D plane, neglecting
the other dimensions. This establishes the concept of a dominant plane, the 2D plane across all n 2D
planes that contains the highest δvmin, and a dominance case, the specific dimension that drives the
δvmin within the dominant plane. Second, consider the nested reachable set S∗

n(c, Topt), which is the
convex hull of Sn(c, Topt), a nested set of S(c, T ) restricted to maneuvers at optimal maneuver times
Topt. The reconfiguration δvmin equals that of the reconfiguration’s dominance case only when ∆δα
is reachable at the dominance case δvmin, meaning ∆δα lies on the boundary of S∗

n(δvmin, Topt) in
the dominant plane and within S∗

n(δvmin, Topt) in the non-dominant planes. Koenig and D’Amico
used this formulation to show that the δvmin and Topt of a dominance case are found as the solution
to the optimization problem

maximize:
ηT∆δα

maxt∈T
(
maxu∈U(1,t)

(
ηTΦJ2(t)B(t)u

)) (11)

where η is the outward normal of the supporting hyperplane for the contour of the reachable set
that intersects ∆δα at minimum cost.8 While this problem often requires numerical methods for
the 6D ROE reconfiguration, the simplicity of the reachable sets in 2D ROE space allows the η
for each dominance case to be characterized geometrically. The dominance case optimal maneuver
times, Topt, correspond to points on S∗, defined by η, that share a boundary with S. Furthermore,
the optimal maneuver direction in pseudostate space matches the direction of η. This geometric
approach for optimal control will be illustrated in the following sections.

REACHABLE SET ANALYSIS

The reachable sets for hybrid control are found by taking a single maneuver of arbitrary cost and
numerically sampling the ∆δα effect over all possible maneuver times, directions, and durations in
the control window to find the set S from Eq. 9. The convex hull of these samples is set S∗ from
Eq. 10 and the reachable set. The ROE are arranged into 3 2D planes: the ∆δa plane (∆δa, ∆δλ),
the ∆δe plane, and the ∆δi plane. Because drag maneuvers have no cost, propulsive control can be
analyzed in isolation to determine dominance cases and optimal propulsive maneuver locations. For
the periodic dynamics in the ∆δe and ∆δi planes, the phase of η most easily relates to a specific
uc, which can be converted to a series of maneuver times.

Propulsive Reachable Sets

Figure 1 displays the reachable sets for propulsive control in near-circular orbit, with indicated
dominance cases, over an extended 100 orbit control window for visual clarity of the warping due to
J2. The IP/OOP coupling from ΦJ2 only warps the reachable set in the ∆δi plane, in the ∆δiy di-
rection (see Figure 1, bottom row). The lack of coupling effects in the ∆δa and ∆δe planes implies
that ∆δα rarely lies within S∗

n(δvmin, Topt) in those planes when ∆δi is the dominant plane. There-
fore, the 6D control problem is split, according to the partial decoupling in Eq. 4, into separated 4D
IP and 2D OOP sub-problems.

First, the IP dominance cases and related η are identified.9 Two distinct affine contours define
the δa and δλ dominance cases in the ∆δa plane. δa optimal maneuvers can occur anytime in
the control window in the direction of ∆δa (see S∗ contours matching ηδa in Figure 1, top left).
In contrast, δλ optimal maneuvers only occur at the beginning and end of the control window in
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Figure 1. Propulsive reachable sets over a 100 orbit control window for coupled
maneuvering in the ∆δa (top left), ∆δe (top right), and ∆δi (bottom left) planes
and for decoupled OOP maneuvers in the ∆δi plane (bottom right). Each distinct
contour of S∗, affine in the ∆δa plane and circular in the ∆δe plane, is labelled with
its corresponding dominance case and viable η.

the direction of ∆δλ (see S∗ contours matching ηδλ in Figure 1, top left). One consistent circular
contour exists in the ∆δe plane, the δe dominance case (see S∗ contours matching ηδe in Figure 1,
top right). In this case, δe optimal maneuver locations are restricted by the angle of η or phase of
∆δe, which occurs at times given by the set

Topt,δe = (ϕ∆δe +mπ − ω̇cτ − uc,0 + kiπ)/Ṁc (12)

where τ = tf−t0, Ṁc = κcηc(3 cos
2(ic)−1), uc,0 is the quantity at t0, ϕ∆δe = tan−1(∆δey/∆δex),

m is an integer such that ϕ∆δe+mπ > ω̇ctf +uc,0, and ki is any integer such that Topt,δe ∈ [t0, tf ].

For OOP control, the entire plane is dictated by the ∆δi vector, but the reachable set over an
extended control window differs from that found by Chernick and D’Amico.9 The δi dominance
case does not have a consistent contour, with the direction of η depending on the phase of ∆δi.
To differentiate these regions, notice that the nonlinear contours of S∗ correspond to a subset of S
restricted to the first or last orbit of the control window (see Figure 1, bottom right). Therefore, δi
dominant regions 2 and 4 are restricted to a single optimal location in the first or last orbit at the
phase ϕ∆δi, while the affine δi dominant regions 1 and 3 have an optimal location in both the first
and last orbit at different ϕ∆δi. The regions of the δi dominance case are summarized in Table 1
and correspond to maneuver times given as

Topt,δi = (ϕ∆δi +mπ − ωc,0 + kiπ)/(Ṁc + ω̇c) (13)
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Table 1. δi Dominance Case Regions.

Region (Orbit) Bounds Optimal ϕ∆δi

1 (First & Last) tan(uc,δi) ≤ ∆δiy
∆δix

uc,δi & uc,δi + π

2 (First) ΦJ2
65 ≤ ∆δiy

∆δix
≤ tan(uc,δi) tan−1

(
∆δiy
∆δix

− ΦJ2
65

)
3 (First & Last) 0 ≤ ∆δiy

∆δix
≤ ΦJ2

65 ΦJ2
65 & 0

4 (Last) − tan(uc,δi) ≤ ∆δiy
∆δix

≤ 0 tan−1
(
∆δiy
∆δix

)
*uc,δi = cot−1

(
±0.5ΦJ2

65(t = t0)
)

for notational simplicity

Differential Drag Reachable Sets

Figure 2. Differential drag reachable sets over a 100 orbit control window under con-
stant atmospheric density in the ∆δa (left) and ∆δe (right) planes. The contours of
S∗ that match the η of the propulsive dominance cases are labelled with those domi-
nance cases and viable η, along with the regions where the δa and δλ dominance cases
have equal δvmin.

Figure 2 displays the reachable sets for differential drag control in near-circular orbit, with indi-
cated dominance cases. Differential drag is a tangential-only maneuver in Eq. 7, so drag reachable
set analysis can be restricted to the IP control sub-problem. The sets assume constant atmospheric
density to maintain contour consistency. Equal positive and negative limits on ∆Bρ are also as-
sumed for visual clarity, although this assumption is not required for the analysis. While differential
drag causes the overall hybrid reachable sets from Eq. 8 to differ from Figure 1, it introduces no
additional cost and does not change the dominance cases or related η found for propulsive-only
control. These same η can be applied to the drag reachable sets to find optimal drag profiles, or the
modulation of ∆Bρ over time, for each dominance case. The regions in Figure 2 that do not match
a propulsive η correspond to multiple dominance cases having equal δvmin (see S∗ contours labelled
δa/λ in Figure 2, left), a problem that will be addressed in later sections.

Reachable set theory for continuous control identifies times for both the beginning and end of
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an optimal maneuver, effectively finding the optimal maneuver duration. In the ∆δa plane, the δa
dominant maneuver spans the length of the control window in the direction of ∆δa (see S∗ contours
matching ηδa in Figure 2, left). The δλ dominant maneuvers span the first and second half of the
control window in opposite directions (see S∗ contours matching ηδλ in Figure 2, left). Similar to
propulsive control, the drag reachable set forms a consistently circular contour in the ∆δe plane
(see S∗ contours matching ηδe in Figure 2, right). δe dominant maneuvers act maximally in the
direction of ∆δe, such that they span the halfspace defined by η, and the optimal locations occur
±90◦ from the phase of ∆δe, at times given by the set

Tdrag,δe = (ϕ∆δe − π/2− ω̇cτ − uc,0 + kiπ) /(nc − ω̇c) (14)

Assuming ∆δα is not reachable with drag control alone, the optimal policy is always bang-bang
control, as drag has no associated cost and is limited in magnitude by the bounds on ∆Bρ. There-
fore, the drag profiles corresponding to each single dominance case are illustrated in Figure 3.

Figure 3. Optimal differential drag profile variations for strictly δa (top left), δλ (top
right), and δe (bottom) dominant reconfigurations.18

HYBRID ARCHITECTURE

The hybrid optimal solution architecture solves the full reconfiguration in three closed-form se-
quential steps: differential drag, OOP propulsive, and IP propulsive. The output from one section
acts as an input into the next, such that ∆δα is modified by the expected effect of each maneuver
plan and IP/OOP coupling is minimized. Restricting the hybrid control problem to a set of optimal
maneuver times enables the construction of optimal hybrid maneuver plans in closed-form. For dif-
ferential drag, the solver must find the optimal duration of each single dominance case optimal drag
profile. In the interest of computational efficiency, the propulsive solver uses the smallest subset of
optimal maneuver times that can achieve both optimality and controllability for IP and OOP states.

Closed-form Differential Drag Solutions

The goal of differential drag control is to find the attitude profile that minimizes the IP reconfig-
uration cost. The inclusion of zero-cost maneuvers into the hybrid control problem increases the
likelihood that the reconfiguration will have multiple dominance cases with the same δvmin (see S∗

contours labelled δa/λ in Figure 2, left). Therefore, the optimal drag maneuver plan varies more
than the options shown in Figure 3. This complication is addressed by an optimal composite profile
that combines portions of each single dominance case profile to accomplish the maximum IP cost
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reduction.18 With a sufficiently long control window, this can result in the entire reconfiguration
being reachable with drag control alone.

A key design choice in the implementation of the drag dynamics in Eq. 8 is the coarseness of the
discretization of the control window. The LTV formulation approximates the continuous solution
as k increases to infinity. However, this will eventually require a prohibitively large amount of
on-board memory, especially in the extended control windows used in hybrid control. To balance
accuracy and computational efficiency, consider an approximation of the atmospheric density over
the control window, given as

ρ(t) = ρ̄+ at+ b sin (2t/nc) (15)

where ρ̄ is the time-averaged density over the control window, at represents small secular changes
over time, b sin (2t/nc) represents periodic changes due to the diurnal bulge near Earth’s equator,
and a and b are arbitrary coefficients. In the continuous case, the periodic effect disappears when
integrated over an arbitrary half-orbit [t, t+π/nc]. For a discretized control window, periodic effects
can be removed prior to integration by sampling maneuvers spaced roughly π/2nc apart, such that
the periodic terms between maneuvers cancel over the arbitrary half-orbit. Therefore, an appropriate
coarse discretization is the set

Tdrag =

{
t0, Tdrag,δe, Tdrag,δe +

π/2

nc − ω̇c
,
tf − t0

2

}
(16)

This discretization allows the implementation of provably optimal control without significant loss
in final state accuracy.

Closed-form Propulsive Solutions

The closed-form propulsive framework used by this paper expands on a previously developed
approach for orbits of arbitrary eccentricity.9 First, calculate δvmin for all dominance cases through
Eq. 11 to determine the reconfiguration dominance case. Second, the relative effect ∆δαi of each
optimal maneuver time ti is found by calculating

∆δαi = ΦJ2(ti)B(ti)u
opt
i (17)

where u
opt
i is an optimal propulsive maneuver of magnitude δvmin. This effectively finds the set S

in Eq. 9. Finally, all optimal maneuver plans are searched to find the combination with lowest cost.
Linear systems of equations can be constructed with an optimality constraint on the non-dominant
ROE, given as [

1⃗ ⃗∆δαi

]T
c⃗ =

[
1 ∆δαi

]T (18)

where c⃗ ∈ Rm×1 is a column vector of magnitude coefficients for m maneuvers, 1⃗ ∈ Rm×1 is
a column vector of ones, and ⃗∆δαi ∈ Rm×m−1 concatenates values for the non-dominant ROE
from Eq. 17. Multiplying each coefficient in c⃗ by δvmin provides the corresponding maneuver
magnitudes. For any combination of times that cannot produce a valid solution (

∑
i ci ̸= 1), a

viable sub-optimal maneuver plan can be found by replacing 1⃗ with the dominant ROE values from
Eq. 17.

Comparing the radial and tangential maneuver effects in Eq. 4, all optimal IP maneuvers are
tangential-only. Consider restricting potential IP maneuver times to Topt,δe in Eq. 12. Maneuvers at
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these times act in the same phase as ∆δe, simplifying the 2D ∆δe problem to a 1D |∆δe| problem.
The reduced IP problem is then fully controllable with 3 tangential maneuvers. The δe dominance
case is solved with non-dominant ROE ∆δa and ∆δλ, and the δa dominance case is solved with
non-dominant ROE |∆δe| and ∆δλ. The OOP problem can be solved with one or two normal
maneuvers at maneuver times Topt,δi in Eq. 13, with non-dominant ROE ∆δix as a placeholder for
two-maneuver plans.

Propulsive Accommodations for Hybrid Control

The three sequential steps of the solution architecture do not mitigate the coupling effects of IP
maneuvers on the OOP state, introducing the risk of significant OOP final state error. Given that all
optimal IP maneuvers are tangential, the IP coupling effect can be found a-priori given the known
resulting ∆δλ from these yet-unsolved tangential maneuvers uT,k, given as

∆δiy,OOP = ∆δiy −
p∑

k=1

Γ(tk)uT,k = ∆δiy −
ΦJ2
61,t0

ΦJ2
21,t0

∆δλ (19)

where ΦJ2
21,t0

and ΦJ2
61,t0

correspond to ΦJ2(t = t0).

Searching through all possible IP maneuver plans requires n-choose-3 iterations, where n is
roughly double the number of orbits in the control window. Given the >100 orbit control windows
used to maximize differential drag, this is not a computationally viable approach. The computational
load can be greatly reduced by identifying maneuvers that are guaranteed to be in a lowest cost
maneuver plan. Considering the IP ∆δαi from Eq. 17, all maneuvers have the same ∆δai and
|∆δe|i, but ∆δλi is time dependent and decreases in magnitude over the control window. Figure 4
visualizes this general trend for both the δe and δa dominance cases to identify the most efficient
maneuvers that span the ∆δλ state space.

Figure 4. Relative ∆δλ effects for optimal maneuvers at times in Topt,δe for the δe
dominance case (left) and the δa dominance case (right).

For the δe dominance case, the first two times in Topt,δe have the largest positive and negative
∆δλi. For the δa dominance case, the first and last time in Topt,δe have the largest and smallest
∆δλi. By restricting 3-maneuver plans to these maneuver times, searching over all plans only
requires iterating through Topt,δe to find the third maneuver time. The algorithm now runs in linear
time, approximately 2n iterations.

δλ dominant reconfigurations do not fit the closed-form architecture presented thus far, as δλ op-
timal maneuver times rarely align with the phase of ∆δe. A near-optimal solution can be generated
by adding δλ optimal maneuvers until the remaining control problem is δe dominant. Consider a
tangential maneuver at the beginning of the control window. The coefficient c0 that causes the δλ
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dominance case to equal the other IP dominance cases is given as

δvmin,δλ(∆δα− c0∆δα0) = δvmin, IP(∆δα− c0∆δα0) (20)

where δvmin, IP = δvmin,δa or δvmin,δe, δvmin(∆δα) is the δvmin for each dominance case as an
analytical function of ∆δα, and ∆δα0 is the pseudostate achieved by a unitary positive tangential
maneuver at t0. Using a positive unitary maneuver makes c0 equivalently the size of the maneuver
in units of m/s. If the c0 for δvmin,δλ = δvmin,δa has a smaller magnitude than that of δvmin,δλ =
δvmin,δe, a δa-δλ mutually optimal maneuver is added at the end of the control window. Eq. 20 is
used again for δvmin, IP = δvmin,δe, replacing ∆δα0 and c0 with corresponding values at the end of
the control window ∆δαf and cf . The previously presented closed-form architecture can then be
run on the remaining δe dominant control problem or skipped entirely if no δe control is desired.

VALIDATION

The effectiveness and validity of the proposed hybrid architecture is demonstrated through an
example reconfiguration proposed for the upcoming SWARM-EX mission.3 The SWARM-EX mis-
sion will use 3 identical 3U CubeSats, each with its own 3-axis attitude determination and control
system (ADCS) and single thruster cold gas propulsion unit. The science mission will study the
equatorial ionization anomaly (EIA) and equatorial thermospheric anomaly (ETA) in the ionized
region of Earth’s upper atmosphere. The mean orbital elements of the chief spacecraft, chosen
arbitrarily among the 3 identical spacecraft, for this objective are given as

αc =
[
a e i Ω ω M

]
=

[
6798km 0.001 51◦ 0◦ 0◦ 90◦

]
(21)

The SWARM-EX spacecraft have an estimated weight of 6kg, a modelled constant coefficient of
drag of 1.5, and a minimum and maximum cross-sectional area dictated by its solar array and
bounded between 0.01m2 and 0.09m2. Studying the full profile of the EIA and ETA requires
about 1300km of inter-satellite separation at a tolerance of ±100km, while periodic instrumen-
tation cross-calibration between satellites requires about 10km of separation while accounting for
collision avoidance. These contrasting specifications define this ”safe approach” validation recon-
figuration for a 100 orbit control window, where the initial and final desired mean ROE state and
resulting pseudostate of a deputy under J2 perturbations, dimensionally scaled by ac, are defined in
row vectors as

[
acδα0

acδαf

]
=

[
−0.02 100 0.5 0.9 −0.05 0.95

0 10 0 1 0 1

]
km (22)

∆acδα =
[
20 −109, 015 −69 −27 50 109

]
m (23)

Three control algorithms will be used alongside the proposed hybrid architecture to evaluate its
optimality, computational efficiency, and final state accuracy. The optimal hybrid control problem
in Eq. 8 is convex and can be solved numerically with the interior point solvers in the CVX software
package.19 CVX will verify that the differential drag solution optimally reduces the IP delta-v cost.
Koenig and D’Amico created a reachable set-based impulsive control algorithm, referred to as the
KD solver, to rapidly compute the lower bound for optimal control and numerically identify optimal
maneuver times.8 The KD solver will quantify the error in the derived analytical δvmin and define the
expected final state error for a maneuver plan that uses J2-perturbed dynamics as the reference truth,
neglecting other perturbations to Keplerian orbit. Chernick and D’Amico extended this approach to
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ROE-space to derive optimal closed-form solutions for most δe and δa dominant reconfigurations
in orbits of arbitrary eccentricity, referred to as the CD solver.9 As mentioned previously, this solver
forms the basis for the propulsive control algorithm used by this work, but does not included the
accommodations for δλ dominant maneuvering or extended control windows. The CD solver will
demonstrate the improvements to provably optimal closed-form propulsive control presented in this
work.

Optimal Maneuver Planning

Optimality is evaluated for each section of hybrid control (IP, OOP, drag) on the initial pseu-
dostate, to separate it from accommodations for IP/OOP coupling. Considering only propulsive
control, the proposed algorithm determines that the IP reconfiguration is δλ dominant, with a δvmin
of 0.11894m/s. The KD algorithm finds an IP δvmin of 0.11907m/s, a 0.13mm/s difference that
is within the 1mm/s stopping tolerance set by the user. Therefore, the proposed algorithm is cor-
rectly identifying the optimal cost. The proposed algorithm results in an IP maneuver plan of cost
0.11938m/s, only 0.26% sub-optimal. The CD algorithm also identifies the same dominance case
and minimum cost as the proposed algorithm but produces an IP maneuver plan of cost 0.11989m/s
(0.69% sub-optimal), higher than the proposed algorithm.

For the OOP reconfiguration, the proposed algorithm finds the pseudostate in δi dominance region
1 with a corresponding δvmin of 0.10782m/s. The KD algorithm finds an OOP δvmin of 0.10785/s,
a 0.03mm/s difference that is within the stopping tolerance set by the user. Therefore, the proposed
algorithm is correctly identifying the optimal cost. In contrast, the CD algorithm finds an OOP
δvmin of 0.13482/s, a 26.97mm/s error. Both the proposed algorithm and the CD algorithm produce
an OOP maneuver plan with cost equal to its respective δvmin, such that the CD algorithm results in
25.01% sub-optimality while the proposed algorithm outputs an optimal plan.

Now considering only differential drag control, the proposed algorithm finds an optimal drag
profile corresponding to the strict δλ dominance case and a remaining IP δvmin of 0.0463m/s after
applying the profile. This saves 0.07264m/s of delta-v cost (61.07%) over propulsive-only methods,
over half of the original cost. The numerical CVX interior point approach finds the same profile with
a remaining IP δvmin of 0.0465m/s, a minimal 0.02mm/s difference. It is worth noting here that the
generic interior point solvers must have a coarse time discretization of propulsive and drag maneuver
inputs to reliably converge to an optimal solution. This further demonstrates the advantages of
implementing a numerically-tractable closed-form algorithm that can be easily tested for reliable
control solution creation.

Performance

The performance and viability of CubeSat implementation is illustrated comparatively between
different control approaches by evaluating computational efficiency and final state error of full ma-
neuver plans. Computational efficiency is quantified by the run time required to produce a maneuver
plan on equivalent hardware, in this case a 3.20 GHz processor and 16GB RAM. The run times re-
quired to solve the example reconfiguration for all considered control approaches are displayed in
Table 2.

In general, closed-form control solvers are preferable for DSS, as the spacecraft often do not have
the on-board computing power to store and process numerical optimization algorithms. However
for the validation reconfiguration used here, the CD algorithm has the longest run time even though
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Table 2. Algorithm run times and final state errors of various control approaches for the validation
reconfiguration.

Control Approach Algorithm Run Time acδαf Error

Numerical Propulsive (KD) 7.286s
[
−2 1672 4 1 1 −4

]
m

Closed-form Propulsive (CD) 631.757s
[
−2 1643 4 −2 −1 200

]
m

Numerical Hybrid (CVX)* 6.887s
[
−2 1770 15 −11 2 −4

]
m

Closed-form Hybrid 0.0012s
[
−2 1703 4 −2 3 25

]
m

*Requires coarse time discretization to converge to solution

it is closed-form. This is because it searches through all possible 3-maneuver IP plans and therefore
scales in polynomial time. The advances made by this work to identify efficient maneuver times
a-priori allow the same approach to be solved almost instantaneously. It is worth noting here that
the CVX solver having the same run time as the KD algorithm is not actually a product of superior
efficiency but rather a sign of poor numerical stability. As mentioned before, a coarse time dis-
cretization is required for CVX to converge to the optimal solution of Eq. 8, and this issue becomes
even more apparent when considering the full 6D ROE reconfiguration. The KD algorithm solves
the optimal impulsive control problem at the same time resolution regardless of control window
length, at a much higher resolution than CVX can handle, and converges reliably to an optimal so-
lution in a similar run time. This demonstrates the need for a specialized algorithm, numerical or
closed-form, to be able to solve the hybrid control problem reliably and at high precision.

All control solutions are propagated by a 4th-order Runge-Kutta integration of the GVE over a
10s time step, incorporating perturbations from Earth’s gravity (30x30 gravity model), atmospheric
drag using the NRLMSISE-00 density model, solar radiation pressure, third body effects, and rel-
ativistic corrections.20 Attitude constraints, such as Sun-pointing to remain power positive and
Earth-pointing for atmospheric measurements, are neglected for simplicity as they do not affect
the fundamental hybrid control problem and will only cause the minimum and maximum bounds
on the differential attitude to become time dependent. Each spacecraft is assumed to have perfect
knowledge of the atmospheric density on-board, to separate the validity of the hybrid approach
from the problem of estimating and rejecting errors in the atmospheric density modelling. The ROE
trajectory of the deputy spacecraft under each maneuver plan is displayed in Figure 5.

The effect of the differential drag profile on hybrid control and corresponding delta-v savings is
illustrated in the δa plane (δa, δλ). The parabolic trajectory caused by drag accomplishes a similar
change in δλ as propulsive-only approaches with lower magnitude tangential maneuvers at the be-
ginning and end of the control window. Unlike the CD algorithm, the proposed closed-form hybrid
approach is able to roughly match the final state error of the two numerical algorithms. The improve-
ments made in this work on OOP maneuver plan accuracy are apparent in the δi plane, where the
proposed algorithm has a much lower final state error than the CD approach. It also accomplishes
this accuracy with fewer propulsive maneuvers than either numerical approach, demonstrated by the
frequent instantaneous trajectory jumps for the numerical algorithms in the δe plane. The authors
made a similar observation in differential drag maneuver frequency, in particular for δλ dominant
reconfigurations, implying that the overall proposed closed-form hybrid approach is more realizable
under the true rotational dynamics of each DSS spacecraft.18
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Figure 5. Mean ROE trajectories for the validation reconfiguration under a full-force
simulation in the ∆δa (top), ∆δe (bottom left), and ∆δi planes (bottom right).

CONCLUSIONS

To take advantage of the unique capabilities of Distributed Space Systems (DSS), novel Guidance,
Navigation, and Control (GNC) algorithms are required that enable spacecraft to conduct relative
maneuvering at low propulsive cost and minimal computational load. Certain environmental forces,
namely atmospheric drag in Low Earth Orbit (LEO), can be leveraged on-board to create differ-
ential forces with negligible propulsion. This paper proposes a full hybrid propulsive-differential
drag architecture that offers significant delta-v savings over long, time-constrained control windows
without sacrificing controllability. This architecture is realized through a Relative Orbital Element
(ROE) state, simplifying nonlinear dynamics to a linear time variant (LTV) model, and reachable set
theory, restricting the optimal control problem to a set of optimal maneuver times. The correspond-
ing drag maneuver durations and propulsive magnitudes can be found in closed-form, producing
provably optimal solutions for decoupled in-plane, out-of-plane ROE control. This deterministic
methodology is shown to have comparable optimality and final state accuracy to numerical ap-
proaches while using minimal computing power. Errors in the dynamics model could potentially be
mitigated through a Model Predictive Control (MPC) setup that re-solves the proposed algorithm
at regular intervals, mimicking the iterative convergence properties found in the literature while
maintaining provable optimality. Accommodations should be made to ensure that error rejection
does not prohibitively increase delta-v cost, either by extending the control window such that the
reconfiguration is reachable with drag control alone or by disabling propulsive control manually.
The novel closed-form hybrid architecture can be used on a wide variety of DSS missions in LEO
to increase mission lifetime. Furthermore, the general reachable set theory approach can be applied

15



to any theoretical impulsive-continuous hybrid control problem with LTV dynamics to guide the
creation of provably optimal closed-form solutions.
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