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CLOSED-FORM OPTIMAL SOLUTIONS FOR
PROPULSIVE-DIFFERENTIAL DRAG CONTROL OF SPACECRAFT

SWARMS

Matthew Hunter* and Simone D’Amico†

This paper presents a novel optimal control approach for Distributed Space Systems (DSS)
to minimize the total delta-v cost for large, time-constrained reconfigurations. Reconfigura-
tion cost is decreased by blending differential drag and propulsive control within the same
control window. By parameterizing the problem with Relative Orbital Elements (ROE) and
leveraging reachable set theory, a maneuver planning methodology is derived to produce
provably-optimal, full roto-translational control solutions in closed-form, such that they can
be implemented on hardware-limited spacecraft.

INTRODUCTION

Distributed Space Systems (DSS) present new opportunities for space missions by using multiple space-
craft to accomplish objectives that would be hard to realize by a single monolithic spacecraft. A desire for
autonomous operation and the trend towards smaller spacecraft place two major constraints on DSS mis-
sion capability: individual spacecraft fuel budget and on-board processing power. These motivate interest in
closed-form fuel-optimal guidance and control algorithms that are computationally tractable, easy to test, and
robust in a variety of orbit regimes and perturbative conditions. Rather than treating perturbative forces as
estimation and control errors, additional delta-v savings can be found by incorporating environmental forces
dependent on differential spacecraft attitude into the control problem. This is especially true in Low Earth
Orbit (LEO), where atmospheric drag is the largest perturbation force behind J2, for missions that require
large changes in along-track separation to accomplish science objectives, such as the planned Space Weather
Atmospheric Reconfigurable Multiscale Experiment (SWARM-EX) mission through the National Science
Foundation (NSF).1

Previous research has investigated the use of differential drag in LEO to conduct reconfigurations or for-
mation keeping with little or no delta-v cost. Differential drag suffers from a lack of control authority due to
uncertainty and variability associated with several of its critical parameters, extremely limited instantaneous
control magnitude, and restricted directionality. Therefore, the literature primarily focuses on robust control
through iterative techniques to converge to a desired final state using no thrust. This is especially common for
maintaining passive safety for DSS with many individuals. Riano-Rios et al. integrated a Linear Quadratic
Regulator (LQR) with constrained least squares to provide simultaneous drag maneuvers for multiple deputy
spacecraft to converge to a desired overall formation and determined that adding an intermediary along-orbit
formation greatly reduced the chance of collision.2 Mazal et al. was able to mathematically guarantee conver-
gence with an LQR controller by placing bounds on the final state accuracy, given known uncertainty in the
atmospheric density and spacecraft drag coefficient.3 Traub et al. emphasized the preservation of mechanical
energy and mission lifetime by solving a maneuver planning optimization problem that minimizes the loss
of semi-major axis in a spacecraft’s orbit through Model Predictive Control (MPC).4 Drag-only formation
maintenance has also been proven to be effective for large satellite constellations, such as the Planet Flock.5
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Parallel efforts have created more comprehensive roto-translational maneuver schemes that simultaneously
stabilize the rotational dynamics, or attitude, of the spacecraft while still accomplishing translational control,
or changing the orbit of the spacecraft. Advances in dual-quaternion formulations have allowed iterative con-
trol of six degrees of freedom (6-DOF) dynamic systems with provable Lyapunov stability, but this approach
struggles to characterize perturbations and has yet to produce a provably optimal control law.6–8 Riano-Rios
et al. accomplishes roto-translational Lyapunov-stability for the narrow subset of spacecraft equipped with
Drag Maneuvering Devices, which allow for partially independent control of translational forces and rota-
tional torques due to drag.9 Pastorelli et al. used a similar approach to achieve 6-DOF Lyapunov stability by
modulating a spacecraft’s center of pressure with a drag sail placed on the back-end of the spacecraft.10

Very little work in differential drag control has taken advantaged of the benefits offered by Integration Con-
stant (IC) states, such as Relative Orbital Elements (ROE), to reduce nonlinear relative dynamics to linear
models. In the broader sense of extended or low thrust maneuvers, Di Mauro et al. examined non-impulsive
maneuvers in near-circular orbit to produce maneuver schemes in closed-form for piecewise continuous ma-
neuvers and numerically by posing fuel-optimal control as a mixed-integer linear program.11, 12 Scala et al.
relies on ROE’s to provide a linear dynamic model to produce affine constraints for a disciplined convex pro-
gramming problem for low-thrust control.13 Ben-Larbi et al. also took advantage of linearized ROE dynamics
to produce a feedforward and feedback Proportional Integral Derivative (PID) control law to conduct input-
output linearization of the complex nonlinear variations of drag control magnitude.14 Another ROE approach
by Koenig et al. models differential drag as on-board low-thrust control and uses switching lanes to control
about a desired state.15 However, none of these techniques consider both propulsive and drag control in the
same control window, for situations when drag control alone will not reach the desired state in a given time.
Furthermore, drag and propulsive control complement one another in simultaneous application, as drag con-
trol contributes maneuvering without fuel consumption while propulsive control provides the controllability
that drag lacks.

This work proposes a methodology to produce provably optimal closed-form solutions for hybrid differ-
ential drag - propulsive control that provide delta-v cost savings for large, time-constrained reconfigurations
over propulsive-only approaches, while maintaining full controllability. Realizing hybrid control in closed
form requires two major contributions to the state of the art. First, the hybrid control problem is formulated
as a linear time-variant (LTV) system in ROE-space by treating differential drag as a control force and ana-
lytically integrating its effect. Second, this convex formulation is characterized through reachable set theory,
decoupling the hybrid control problem into successive drag and propulsive maneuver planning steps without
compromising optimality to allow optimal drag profiles to be found in closed form. This paper presents the
methodology used to reach these solutions in four sections. First, the LTV hybrid control problem is derived.
Second, reachable set theory is used to visualize the controllability of differential drag and separate optimal
drag and propulsive control solutions. Third, all possible optimal drag profile variations are found analyt-
ically. Fourth, a flexible drag profile architecture is designed to bridge the gap between possible optimal
drag profiles, as well as the gap between hybrid and drag-only control. Finally, the validity of the proposed
closed-form methodology is proven by comparing its solutions with those produced from numerical interior
point methods, and the validity of the hybrid approach overall is verified in a high fidelity orbital propagator
that integrates the Gauss Variational Equations (GVE) subject to relevant perturbations.

BACKGROUND

Relative Orbital Elements as State Parameters

Spacecraft state estimation and control actions are dictated in cartesian frames such as Earth-Centered-
Inertial (ECI) or Radial-Tangential-Normal (RTN). ECI is a geocentric right-handed triad aligned with the
equator, vernal equinox, and North Pole. RTN centers on a spacecraft’s center of mass and aligns with the
orbital plane, positive radially outward and tangentially along the direction of travel, and the angular mo-
mentum vector. However, more recent control efforts have used intermediary Integration Constant (IC) states
to build accurate linear models of nonlinear systems for analytical control algorithms and guidance strate-
gies. A commonly used IC parameterization is Relative Orbital Elements (ROE), which were pioneered and
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flight proven on the PRISMA and TanDEM-X missions to demonstrate deterministic propulsive maneuver
schemes for reconfiguration and formation keeping.16 ROE are defined as a nonlinear combination of the
Keplerian orbital elements and therefore are slowly varying under the presence of both Keplerian and per-
turbation dynamics. Further osculating dynamics can also be eliminated by adopting mean ROE from mean
orbital elements, which approximate a spacecraft’s trajectory as an ideal ellipse by removing perturbative
effects from the osculating orbital elements. For Keplerian motion and small separations compared to or-
bit radius, ROE are equivalent to the IC’s of the linear differential equations of relative motion, such as the
Hill-Clohessy-Wiltshire (HCW) and Yamanaka-Ankersen (YA) equations. This work adopts the following
definition of ROE

δα =


δa
δλ
δex
δey
δix
δiy

 =



ad−ac

ac

(Md −Mc) + (ωd − ωc) + cos(ic)(Ωd − Ωc)
ed cos(ωd)− ec cos(ωc)
ed sin(ωd)− ec sin(ωc)

id − ic
sin(ic)(Ωd − Ωc)

 (1)

where δa is the mean relative semi-major axis, δλ is the mean relative longitude, δex and δey are the com-
ponents of the mean relative eccentricity vector δe, δix and δiy are the components of the mean relative
inclination vector δi, and a, e, i, Ω, ω, and M are the mean Keplerian orbital elements. These ROE are
referred to as quasi-nonsingular because they are valid for inclined orbits of arbitrary eccentricity. This for-
mulation describes the relative dynamics between a chief and deputy spacecraft, denoted by subscripts c and
d respectively. The chief can describe a reference satellite that does not conduct maneuvers or a reference
orbit. Isolating the long term and secular dynamics enables the derivation of accurate ROE-based State Tran-
sition Matrices (STM) to represent relative spacecraft motion as a LTV system. Further advances in STM’s
by Koenig and Guffanti have included corrections for the Earth’s oblateness (J2), atmospheric drag, solar ra-
diation pressure (SRP), and third body Sun and Moon effects in closed-form, further increasing the accuracy
of the model over long time steps.17–19 In the context of maneuver planning, STM’s propagate the effect of
control forces from the time of actuation to the end of the control window. For notational simplicity, auxiliary
matrix Γ is introduced to quantify the change in mean ROE final state at the end of the control window tf
given an instantaneous RTN control action at time t and is given as

Γ(t) = Γ(αc(t), tf − t) = ΦJ2(αc(t), tf − t)B(αc(t)) (2)

=



1 0 0 0 0 0

ΦJ2
21 1 0 0 ΦJ2

25 0
0 0 cos(ω̇c(tf − t)) − sin(ω̇c(tf − t)) 0 0
0 0 sin(ω̇c(tf − t)) cos(ω̇c(tf − t)) 0 0
0 0 0 0 1 0

ΦJ2
61 0 0 0 ΦJ2

65 1


1

acnc


0 2 0
−2 0 0

sin(uc) 2 cos(uc) 0
− cos(uc) 2 sin(uc) 0

0 0 cos(uc)
0 0 sin(uc)


with the following simplifying substitutions

ηc =
√
1− e2c , κc =

3

4

J2R
2
E

√
µ

a
7/2
c η4c

, ω̇c = κc(5 cos
2(ic)− 1) (3)

ΦJ2
21 = −

(
3

2
nc +

7

2
κc(1 + ηc)(3 cos

2(ic)− 1)

)
(tf − t)

ΦJ2
25 = −κc(4 + 3ηc) sin(2ic)(tf − t) , ΦJ2

61 =
7

2
κc sin(2ic)(tf − t) , ΦJ2

65 = 2κc sin
2(ic)(tf − t)

where STM ΦJ2 includes the Koenig corrections for J2 for mean ROE in near-circular orbit, the control input
matrix B maps control actions in the RTN frame to an equivalent change in osculating or mean ROE in near-
circular orbit, αc is the chief mean orbital elements at the time of the control action, nc is the mean motion,
ω̇c denotes the rate of drift of the argument of periapsis, and uc is the mean argument of latitude at the time
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of the control action. This dynamics model assumes that the spacecraft swarm is operating in LEO where
the dominant perturbations to Keplerian orbit are J2 and atmospheric drag, and orbits can be approximated
as near-circular. This is a reasonable assumption, as the magnitude of differential drag is higher in LEO than
any other orbit regime, making this regime the most relevant for this work. Given that atmospheric drag will
be posed as a form of control in later sections, the only relevant correction required for state propagation
accuracy over long control windows is the J2 correction. Additionally, an important consequence of the ROE
linearization process is the decoupling of the in-plane ROE dynamics (δa, δλ, δe) from the out-of-plane ROE
dynamics (δi) for this choice of ROE in near-circular orbit.

Reachable Set Theory for Impulsive Control

Reachable set theory provides a geometric framework for optimal control problems with norm-like cost
functions and LTV dynamics. The framework consists of contact and support functions that can be derived
as analytical expression of the spacecraft’s state. Previous efforts by Koenig, Chernick, and D’Amico used
reachable set theory to derive optimality conditions to produce efficient, globally optimal solvers for impul-
sive control of LTV dynamics, and the methodology of this approach is summarized here.20, 21 Let U(c, t) be
the set of control actions u in the RTN frame with a cost no greater than c (L2 norm cost function) at time t.
Let S(c, t) be the set of pseudostates ∆δα that can be reached by a single control input such that u ∈ U(c, t),
given as

S(c, t) = {∆δα : ∆δα = Γ(αc(t), tf − t)u,u ∈ U(c, t)} (4)

where ∆δα = δα(tf )−Φ(αc(t0), tf−t0)δα(t0) is invariant with respect to the control problem, Γ is given
in Eq. 2, and t0 and tf define the beginning and end of the control window. ∆δα and Γ are substituted to
simplify notation. Let T be a discrete set of maneuver times in the interval [t0, tf ], and let S(c, T ) be the set
of ∆δα that can be reached using a single control action applied at any time in T with a cost no greater than
c, given as

S(c, T ) =
⋃
t∈T

S(c, t) (5)

Finally, let S∗(c, T ) be the set of ∆δα that can be reached by a set of k ≥ 1 control inputs applied at times
in T with a combined cost no greater than c, defined as

S∗(c, T ) = {∆δα : ∆δα =

k∑
j=1

Γ(αc(tj), tf − tj)uj , tj ∈ T,uj ∈ U(cj , tj),

k∑
j=1

cj = c} (6)

Γ(αc(tj), tf − tj)uj must be in S(cj , T ) for any tj ∈ T and uj ∈ U(cj , tj). Because the cost of a control
input scales linearly with its magnitude, S∗(c, T ) forms the convex hull of S(c, T ), and the minimum cost for
a desired reconfiguration must lie on the boundary of S∗(c, T ). Chernick proved that a 2n-dimensional (2nD)
control problem can be decomposed into n 2D planes and evaluated separately to find the minimum cost of
the reconfiguration without loss of generality.20 The coupling between planes instead results in optimality
constraints, such as optimal maneuver times, which establish a system of equations for an optimal closed-
form solution.

For a 6-dimensional ROE state, a convenient choice of 2D planes is the ∆δa plane (∆δa, ∆δλ), the ∆δe
plane, and the ∆δi plane, where the leading ∆ denotes a pseudostate as defined in Eq. 4. The dominant plane
of a reconfiguration refers to the plane that requires the highest cost to reach the desired pseudostate in its
plane, and the dominant ROE, or dominance case, indicates the specific ROE that requires the highest cost to
reach its desired pseudostate within the dominant plane. When applying this methodology to spacecraft, the
cost associated with a specific dominance case is known as its delta-v minimum, the highest of which drives
the overall delta-v minimum of the reconfiguration, and Chernick derived an analytical formulation of the
delta-v minimum for each ROE dominance case.20 Because ROE linearization decouples in-plane and out-
of-plane dynamics, in-plane reconfigurations can be analyzed and conducted separately from out-of-plane
reconfigurations, turning a 6D problem into a set of equivalent 4D and 2D sub-problems.

4



PROBLEM DEFINITION

The hybrid control problem proposed below expands on the propulsive control formulation by Chernick
and D’Amico without violating any of the assumptions or key characteristics required to produce closed-
form solutions. Using the LTV dynamics model described previously, the most general formulation of the
reachable set theory-compatible optimal control problem is

minimize c =

∫
T

f(u(t), t) (7)

subject to δα(tf )−Φ(αc(t0),tf − t0)δα(t0) = ∆δα =

∫
T

Γ(αc(t), tf − t)u(t)dt

where δα(t0) describes the deputy spacecraft’s initial mean ROE state, δα(tf ) is the deputy spacecraft’s
final mean ROE state, f is a norm-like cost function, Γ is given in Eq. 2, and T is a set of times that span the
control window defined by the interval [t0, tf ]. The difference between the final desired and the initial state
propagated by the STM across the control window is again known as the pseudostate ∆δα and is invariant
with respect to the control problem. The control itself can be split into two types, propulsive and drag, defined
as

minimize c =

k∑
j=1

||upropulsive
j ||2 +

∫
T

f(udrag(t), t) (8)

subject to ∆δα =

k∑
j=1

Γ(tj)u
propulsive
j +

∫
T

Γ(t)udrag(t)dt , tj ∈ T

Propulsive maneuvers are characterized by high thrust magnitude and short maneuver duration with respect
to the orbit period, allowing them to be approximated as instantaneous additions of delta-v or “impulsive”
maneuvers. Propulsive control can then be posed as an affine function of impulsive maneuvers and separated
from the remaining integral of time-varying control. No assumptions about the nature of drag control are
required to separate it from propulsive maneuvers, except that it can be conducted independently of propulsive
control.

DIFFERENTIAL DRAG FORMULATION

Unlike conservative forces such as the J2 perturbation, atmospheric drag can be controlled on-board each
spacecraft through the modulation of attitude or cross-sectional area normal to the direction of travel. The
force of atmospheric drag on a single spacecraft is given by

pdrag =
1

2
ρv2

CDA

m
=

1

2
ρn2a2B (9)

where ρ is the atmospheric density, v defines the spacecraft velocity, CD is the spacecraft’s coefficient of
drag, A is the cross-sectional area, m is the spacecraft’s mass, B = CDA

m defines the spacecraft ballistic
coefficient, and n and a are the mean motion and mean semi-major axis of the spacecraft’s orbit. In near-
circular orbit, v = na approximates the spacecraft velocity as the tangential velocity for circular motion
and is constant over the entire orbit. The force from atmospheric drag acts opposite the direction of travel
and therefore always acts in the negative tangential direction. The force also has a minimum and maximum
limit, dictated by the spacecraft’s minimum and maximum achievable cross-sectional area and corresponding
ballistic coefficient.

Differential drag is the difference between the force of atmospheric drag on the chief and deputy space-
craft and is controlled by modulating differential attitude between the spacecraft. This differential force is
expressed in the RTN frame as

udrag(t) =

 0

pdrag, chief(t)
0

−
 0

pdrag, deputy(t)
0

 =

 0

δpdrag(t)
0

 =

 0
1
2n

2
ca

2
c∆Bρ(t)
0

 (10)
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where ∆Bρ(t) = ρc(t)∆Bc(t) − ρd(t)∆Bd(t) defines the augmented differential ballistic coefficient for
notational simplicity. The chief and deputy are assumed to be in close orbits, such that they both have the
chief’s mean motion and mean semi-major axis. Additionally, assuming relatively small separations between
the chief and deputy allows the difference between the tangential directions of the spacecraft to be neglected,
and the force of atmospheric drag acts only in the tangential direction with respect to the chief on both
spacecraft. This results in a differential force that also only acts in the tangential direction and has minimum
and maximum limits depending on the drag force limits achievable by the chief and deputy. This assumption
is reasonable, as a spacecraft conducting relative maneuvers with respect to a chief to maintain a formation
inherently implies an along-track separation that is significantly smaller than the orbital radius, or relative
maneuvering would not be relevant.

To analyze differential drag with reachable set theory, drag needs to be posed in an affine LTV formulation.
This can be achieved by discretizing the control window into a series of time steps and calculating the effect
that a constant drag maneuver over a given time step will have on the pseudostate, formulated as

∫
T

Γ(t)udrag(t)dt =

m∑
i=1

∫ ti+1

ti

Γ(ti)u
drag
i (ti)dt =

m∑
i=1

Γdrag(ti)∆Bρ
i (11)

where the control window has been divided into m time steps and the control variable can be posed as a vector
of ∆Bρ values, one value for each time step. Because differential drag is an extended maneuver, the effect of
drag on the pseudostate requires integration with respect to time. The integration is of Eq. 11 accomplished
analytically and results in the following expression

∫ ti+1

ti

ΦJ2(αc(t), tf − t)B(αc(t))dt =

∫ ti+1

ti

Γ(t)udrag(t)dt (12)

= acnc



ti+1 − ti
0.5ΦJ2

21(ti − ti+1)(ti + ti+1 − 2(tf − t0))
sin((n−ω̇c)(ti+1−t0)+ω̇c(tf−t0)+uc,0)−sin((n−ω̇c)(ti−t0)+ω̇c(tf−t0)+uc,0)

n−ω̇c
cos((n−ω̇c)(ti−t0)+ω̇c(tf−t0)+uc,0)−cos((n−ω̇c)(ti+1−t0)+ω̇c(tf−t0)+uc,0)

n−ω̇c

0

0.5ΦJ2
61(ti − ti+1)(ti + ti+1 − 2(tf − t0))


∆Bρ(ti)

= Γdrag(ti)∆Bρ(ti) = Γdrag(ti)∆Bρ
i

where the substitution for chief mean argument of latitude uc = n(ti+1 − ti) + uc,0 is used and uc,0 =
ωc,0+Mc,0 defines the initial mean argument of latitude. Here, the formulation has been rearranged the isolate
the control variable, ∆Bρ, from the variables dependent on the spacecraft’s state, which are concatenated
into the auxiliary matrix Γdrag. In many cases, this integration is analytically intractable, due to time-varying
parameters in multiple periodic terms. Two key assumptions remedy this issue. First, atmospheric density
is assumed to be constant over each time step at its value at the beginning of the time step. This neither
requires nor excludes the possibility of the density value being the same for the chief and deputy. Second,
the differential ballistic coefficient is assumed to be held constant over the time step, such that the entire
augmented differential ballistic coefficient is no longer time-dependent and reduces to ∆Bρ

i for each time
step. This effectively places a lower bound constraint on drag maneuver length, dictating the shortest drag
maneuver that can be conducted.
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Incorporating the affine LTV formulation of drag control into Eq. 8 produces the following formulation

minimize c =

k∑
j=1

||upropulsive
j ||2 (13)

subject to ∆δα =

k∑
j=1

Γ(tj)u
propulsive
j +

m∑
i=1

Γdrag(ti)∆Bρ
i ti ∈ T , tj ∈ T

m∑
i=1

ti+1 − ti = tf − t0

∆Bρ
i,min ≤ ∆Bρ

i (t) ≤ ∆Bρ
i,max ∀ ti

which reduces to a norm-like cost function and fully LTV dynamics, making the problem compatible with the
reachable set theory method proposed in [20]. This formulation neglects the rotational dynamics of both the
chief and deputy spacecraft and as a result assumes changes in spacecraft attitude occur instantaneously. This
must be taken into account during control design when discretizing the control window for drag maneuvering,
as the minimum drag maneuver length cannot be smaller than the time required to change spacecraft differen-
tial attitude from its maximum to minimum value. The key benefit of adding differential drag control is that
it incurs little or no propellant cost, and the cost of drag maneuvers can be removed from the cost function.
The resulting optimal control problem is almost identical to the impulsive control problem posed in Eq. 2 in
[20] by Chernick with only the addition of drag control in the dynamics constraint. It is easy to see that if the
effect of differential drag on the pseudostate is known, then it can be subtracted from the original pseudostate
of the reconfiguration. Any pseudostate-based optimal control solver can solve this reduced problem without
modification.

HYBRID REACHABLE SETS

In general, reachable set theory analyzes the maximum effect of a given maneuver on the spacecraft’s
pseudostate. In the impulsive case, the shape of the reachable set is formed by sampling all possible directions
for a maneuver of arbitrary cost. The convex hull of these points establishes the minimum cost required for
a convex combination of maneuver magnitudes to reach a desired pseudostate. Because differential drag is
a zero-cost extended maneuver and has control magnitude limits, the optimal policy for differential drag is
bang-bang control, assuming the desired final state is not reachable with drag-control alone. The differential
drag reachable set can be visualized by varying the length of a single drag maneuver within the desired control
window. The goal of the reachable set theory analysis is then to find the optimal drag maneuver length that
minimizes the remaining cost of the reconfiguration control problem.

While differential drag affects the out-of-plane pseudostate in Eq. 12, the effect on the δiy pseudostate is
several magnitudes smaller than any of the in-plane ROE pseudostates and can be safely neglected. Therefore,
only the in-plane ROE need to be analyzed. The shape of the differential drag reachable sets are found in
Figure 1 through Eq. 12, by discretizing a three orbit control window and sampling all viable combinations
of ti and ti+1 (ti+1 ≥ ti) for both the positive and negative limits of ∆Bρ.

The visualization assumes equal positive and negative limits on ∆Bρ and constant atmospheric density
across the formation and throughout the control window. It is worth noting that the constant density as-
sumption is required to maintain the consistency of the differential drag reachable set such that closed-form
solutions can be found. Given that drag is posed as an affine approximation of many zero-cost impulsive
maneuvers, the convex hull of these sample points is the reachable set for differential drag, indicated by the
black lines in Figure 1. Figure 1 also indicates important points of the reachable set in the ∆δa plane for the
following hybrid reachable set analysis.

Hybrid control is analyzed by taking all possible combinations of these sample points with the near-circular
impulsive reachable sets found by Chernick. The impulsive reachable sets are visualized by sampling impul-
sive maneuvers of magnitude 0.01m/s in all RTN directions and plugging these maneuvers into Eq. 4. The
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Figure 1: Differential drag reachable sets under constant atmospheric density in the ∆δa plane (left) and
the ∆δe plane (right).

convex hull of the resulting pseudostates is the impulsive reachable set. The hybrid reachable set is found
by taking all combinations of sampled points between both sets and summing their effect to produce hybrid
samples. The convex hull of these hybrid samples is the hybrid reachable set. Figure 2 compares the varying
shapes of the impulsive, differential drag, and hybrid reachable sets with important relevant contours and
points indicated.

Figure 2: Comparison of the reachable sets for different types of control under constant atmospheric density
in the ∆δa plane (left) and the ∆δe plane (right).

The simplicity of the shape of the impulsive reachable set allows some important limits to be placed on
the range of possible drag profiles, also known as the differential drag maneuver plan or the modulation of
the differential ballistic coefficient over the control window. Portions of the hybrid reachable set contour in
the ∆δa plane are clearly dictated by either the shape of the impulsive or differential drag reachable set.
Contours 1, 3, 5, and 7 are all straight linear lines, like the impulsive set, while Contours 2, 4, 6, and 8 are
all nonlinear curves with the same shape as corresponding sections of the drag set. The hybrid contour in
the ∆δe plane is a circle, the same as both the impulsive and drag reachable sets. The critical observation
to make about the hybrid reachable set is that the reconfiguration dominance cases for the impulsive-only
problem (δa, δλ, δe) are the same as the hybrid problem, as drag maneuvers contribute no cost. This is
best illustrated graphically. Consider Contour 2 indicated in Figure 2. This contour is created by summing
the pseudostates in Segment A-B in the drag reachable set with that at Point G on the impulsive reachable
set. When considering the combined cost, Segment A-B contributes no cost since it is composed of drag
maneuvers, and Point G corresponds to the exact point on the impulsive reachable set where the δa and
δλ dominance cases are equal. Therefore, a pseudostate that intersects Contour 2 indicates equal delta-v
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minimums for the δa and δλ dominance cases. All drag maneuver lengths in the contour are equally optimal,
since the cost of the drag profile is zero regardless of the length of the drag maneuver. In contrast, consider
Contour 1. This contour is created by summing the pseudostate at Point A in the drag reachable set with
those in Segment G-H on the impulsive reachable set. Again considering cost, Point A contributes no cost as
a drag maneuver, and Segment G-H encompasses the complete δa dominance case for ∆δa > 0. Therefore,
Contour 1 only corresponds with one impulsive dominance case, δa, as well as one optimal drag profile
length at Point A. Additionally, recall that this maneuver length at Point A was optimal for all of Contour
2. By extending this thought process to the full hybrid reachable set, the optimal drag maneuver lengths
that correspond to contours with only one optimal drag maneuver length and one impulsive dominance case
also achieve optimal cost in the regions with a range of optimal drag maneuver lengths and multiple equal
impulsive dominance cases. Therefore, the only drag profiles required to reach global optimality are those
that correspond to a single impulsive dominance case. The optimal drag control profiles can be analytically
derived for each one of these points, such that all possible optimal control profile variations are known a
priori. This is done in the following section.

OPTIMAL DRAG PROFILES

As mentioned previously, only three dominance cases exist for in-plane ROE in near-circular orbit: δa, δλ,
and δe. The strictly δa dominant regions (Contours 1 and 5, cf. Fig. 2) correspond to a single drag maneuver
at Points A and D (cf. Fig. 1). The optimal drag maneuver spans the entire control window in the direction
of the desired δa pseudostate, and both options are displayed in Figure 3.

Figure 3: Optimal drag profiles for δa dominant reconfigurations given ∆δa > 0 (left) or ∆δa < 0 (right).
Green drag profile corresponds to positive ∆B, and red drag profile corresponds to negative ∆B.

For the strictly δλ dominant regions (Contours 3 and 7, cf. Fig. 2), the corresponding drag maneuver
occurs at Points B, C, E, and F (cf. Fig. 1) where the convex hull of the drag reachable set is tangent to the δλ
dominant regions of the impulsive set. The slope of the δλ dominant regions was found in Table 12 in [20]
by Chernick, defined as

m =
2

Φ̂J2
21(tf − t0)

(14)

where m is the slope and Φ̂J2
21 = ΦJ2

21/(tf − t) is the time independent component of ΦJ2
21. The parameterized

slope of the drag convex hull in the ∆δa plane is defined from Eq. 12 as

∆δa

∆δλ
=

∆t

0.5Φ̂J2
21(−∆t)(2t+∆t− 2(tf − t0))

≈ 2

Φ̂J2
21(2(tf − t0)− 2t)

(15)

where ti = t and t is the maneuver timing, ti+1 = t+∆t and ∆t is the length of an infinitesimally small drag
maneuver, and ∆δa and ∆δλ are changes in pseudostate due to drag. Setting this slope equal to the slope of
the δλ dominant region solves the tangent point between the drag convex hull and the δλ dominant region as

2

0.5Φ̂J2
21(2(tf − t0)− 2t)

= m =
2

Φ̂J2
21(tf − t0)

(16)

t =
1

2
(tf − t0)

9



The nonlinear contours of the drag convex hull in the ∆δa plane are shaped by maneuvers that either start
at t0 or end at tf . Two optimal maneuvers result: a maneuver in the direction of the desired δλ pseudostate
that spans the first half of the control window and a maneuver in the opposite direction of the desired δλ
pseudostate that spans the second half of the control window. Both maneuvers are achievable in the same
control window, and the optimal drag profiles are shown in Figure 4.

Figure 4: Optimal drag profiles for δλ dominant reconfigurations given ∆δλ < 0 (left) or ∆δλ > 0 (right).
Green drag profile corresponds to positive ∆B, and red drag profile corresponds to negative ∆B.

Similar to propulsive maneuvers, the effect of differential drag on the ∆δe plane is periodic and circular.
The drag reachable set shape matches the impulsive set shape in all directions, and while this means that the
optimal profile varies over the entire hybrid set, several basic characteristics of the profile remain constant.
First, the magnitude of the differential drag ∆δe vector is analyzed by considering an arbitrary drag maneuver
beginning at time t until time t+∆t, given again from Eq. 12 as

∆δex =
acnc∆Bρ

nc − ω̇c
[sin((n− ω̇c)(t+∆t− t0) + ω̇c(tf − t0) + uc,0) (17)

− sin((n− ω̇c)(t− t0) + ω̇c(tf − t0) + uc,0)]

=
acnc∆Bρ

nc − ω̇c
[2 cos((n− ω̇c)(t+

1

2
∆t− t0) + ω̇c(tf − t0) + uc,0) sin((n− ω̇c)

1

2
∆t)]

∆δey =
acnc∆Bρ

nc − ω̇c
[cos((n− ω̇c)(t− t0) + ω̇c(tf − t0) + uc,0) (18)

− cos((n− ω̇c)(t+∆t− t0) + ω̇c(tf − t0) + uc,0)]

=
acnc∆Bρ

nc − ω̇c
[2 sin((n− ω̇c)(t+

1

2
∆t− t0) + ω̇c(tf − t0) + uc,0) sin((n− ω̇c)

1

2
∆t)]

||∆δe|| = acnc∆Bρ

nc − ω̇c
2 sin((n− ω̇c)

1

2
∆t) (19)

where nc − ω̇c is slightly less than the mean motion nc, and the drag control period will be defined as
Tdrag = 2π

nc−ω̇c
. The periodic function in Eq. 19 reaches a maximum value at ∆t = π

nc−ω̇c
, so the optimal

drag length is half of the drag control period. Both negative and positive maneuvers can reach this magnitude,
such that the optimal policy involves oscillating maneuvers of this length repeated throughout the control
window. The exact timing of these oscillations is such that both maneuvers will act directly towards the
desired δe pseudostate. To capture all possible combinations over a given drag control period, a three-drag
scheme beginning at an arbitrary time ti is considered in closed-form, defined as

∆δey,desired
∆δex,desired

=
c1,i − c1,f − (c2,i − c2,f ) + c3,i − c3,f
s1,f − s1,i − (s2,f − s2,i) + s3,f − s3,i

(20)

where ∆δey,desired and ∆δex,desired are the desired pseudostates, sm,j = sin((n−ω̇c)ti+ω̇c(tf−t0)+uc,0),
cm,j = cos((n − ω̇c)ti + ω̇c(tf − t0) + uc,0), subscript m indicates the number of the drag maneuver, and
subscript j indicates the timing of the beginning i or end f of the drag maneuver. Given that the cycle spans
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one drag control period, several simplifying substitutions can be made, given as

t1,f = t2,i , t2,f = t3,i (21)
s1,i = sin(ω̇c(tf − t0) + uc,0) = s3,f = sin(2π + ω̇c(tf − t0) + uc,0) (22)
c1,i = cos(ω̇c(tf − t0) + uc,0) = c3,f = cos(2π + ω̇c(tf − t0) + uc,0) (23)

t3,i = t2,i +
π

n− ω̇c
(24)

by assuming the maneuvers are bang-bang. The second or “middle” maneuver is set to the optimal drag
length in Eq. 19 and to the opposite direction of the other maneuvers. Because this optimal length is half of
the drag control period, the other two maneuvers are also optimal, as they overlap over the end of one cycle to
the next. An example of this three-drag scheme cycle is visualized in Figure 5. The drag oscillation timings
are finally defined as

∆δey,desired
∆δex,desired

=
−2c2,i
2s2,i

= − cot((n− ω̇c)(t2,i − t0) + ω̇c(tf − t0) + uc,0) (25)

t2,i =
1

(n− ω̇c)

(
cot−1

(
−∆δey,desired
∆δex,desired

)
− ω̇c(tf − t0) + uc,0)

)
+ t0 (26)

t3,i = t2,i +
π

n− ω̇c
+ t0 (27)

This defines a repeating cycle over the entire control window. Since the beginning time of these oscillations is
arbitrary, the first cycle begins immediately at the start of the control window. An example of the full optimal
profile for δe dominant reconfigurations is displayed in Figure 5. The exact timing of the oscillations in the
optimal profile will vary depending on the direction of the ∆δedesired vector.

Figure 5: Optimal drag profile for δe dominant reconfigurations for a single cycle (left) and the full control
window with a single cycle indicated (right). Green drag profile corresponds to positive ∆B, and red drag
profile corresponds to negative ∆B.

CLOSED-FORM SOLUTIONS FOR DRAG CONTROL

The previous section covers all optimal drag control profiles for reconfigurations with a single hybrid
dominance case, meaning that the subtracting the pseudostate reached by the dominant drag profile from the
original pseudostate does not change the problem’s dominance case. Optimally solving the hybrid control
problem is not as simple as applying just one dominant profile. For example, recalling that the delta-v
minimum for each dominance case is the cost required to achieve that particular ROE’s pseudostate, consider
a reconfiguration problem with a slightly higher δa delta-v minimum than δλ delta-v minimum for propulsive-
only control. The highest delta-v minimum drives the minimum cost to accomplish the full reconfiguration,
so applying the entire δa dominant drag profile may result in a reduced propulsive reconfiguration problem
that is δλ dominant. This implies that part of the δλ dominant profile should have been used to decrease
the δλ delta-v minimum to match the δa delta-v minimum, indicating the full δa dominant drag profile
is non-optimal with respect to the complete hybrid control problem. Furthermore, each drag profile only
optimally minimizes the ROE of its corresponding dominance case. Pseudostates that are fully reachable
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with only drag control may require contributions from all three dominant profiles to accomplish the full in-
plane reconfiguration at zero cost. To improve drag profile robustness and maintain optimality while bridging
the gap between hybrid and drag-only maneuver planning, a flexible closed-form drag profile structure is
constructed, given knowledge of the state space and the limited number of dominance cases. To distinguish
this profile from the optimal profiles for a single hybrid dominance case, the new profile will be referred to
as the composite drag profile. The optimal profiles from the previous section will be referred to collectively
as the optimal single hybrid dominance case drag profiles and individually by their specific dominance case
(δa, δλ, δe).

The general methodology of the composite drag profile is to find the combination of the three single
hybrid dominance case drag profiles that result in the lowest overall delta-v minimum. The equations for the
propulsive delta-v minima of each in-plane dominance case in near-circular orbit were derived by Chernick
in [20] as

δvmin,δa =
nc

2
ac∆δa (28)

δvmin,δλ =
±(mac∆δλ− ac∆δa)

ac∆δa0
(29)

δvmin,δe =
nc

2
||ac∆δe||2 (30)

where ∆δa0 defines the pseudostate achieved by a unitary tangential impulse at t0 and δv denotes a propulsive
delta-v minimum. These δvmin change for hybrid control, as the propulsive cost depends on the pseudostate
of the original problem subtracted by that reached by the drag control profile. Finding the optimal cost of
the composite drag profile requires comparing the effect of one optimal single hybrid dominance case drag
profile against the others. First, the effect of using a portion of the δa dominant profile on δvmin,δa is found
through Eq. 12 as

∆δvδa =
nc

2
ac∆δadrag =

1

2
a2cn

2
c∆Bρ

approx∆tδa (31)

where ∆Bρ
approx = 1

2 (||∆Bρ
max||+ ||∆Bρ

min||) approximates the augmented differential ballistic coefficient as
its mean maximum magnitude, ∆δv denotes the change in the delta-v minimum due to using a drag profile,
∆δadrag defines the change in pseudostate due to using the δa dominant drag profile, and ∆tδa is the length
of the δa dominant drag profile used. It is important to note that ∆δadrag does not depend on when the δa
dominant profile is used in the control window, only the length of the dominant profile that is used. Next, the
effect of using a portion of the δλ dominant profile on δvmin,δλ is found through Eq. 12 as

∆δvδλ =
±(mac∆δλdrag − ac∆δadrag)

ac∆δa0
(32)

= ±a2cnc∆Bρ
1
2 Φ̂

J2
21m(2(tf − t0)∆t− 2t∆t−∆t2)−∆t

ac∆δa0

= 2a2cnc∆Bρ
approx

− 1
2 Φ̂

J2
21m(∆t2δλ) + ∆tδλ

ac∆δa0

where t and ∆t are the start time and length of any arbitrary drag maneuver in the control window and ∆tδλ
is the length of the δλ dominant profile used at the start and end of the control window. The δλ dominant
profile is used optimally at the start and end of the control window where any given drag profile has its largest
effect on δvmin,δλ. Finally, effect of using a portion of the δe dominant profile on δvmin,δe is found through
Eq. 12 as

∆δvδe =
nc

2
||ac∆δedrag||2 ≈

nc

2

(
2acnc∆Bρ

nc − ω̇c
− 0

)
nc − ω̇c

π
∆tδe =

a2cn
2
c∆Bρ

approx

π
∆tδe (33)

where ∆tδe is the length of the δe dominant profile used. The periodic evolution of ∆δedrag is approximated
as linear using the maximum magnitude per half drag control period found in Eq. 19 to simplify periodic
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functions to an analytically tractable linear model. It is again important to note that ∆δedrag does not depend
on when the δe dominant profile is used in the control window, only the length of the dominant profile that is
used.

To compare the effect of using portions of one single hybrid dominance case drag profile against the
others, the composite drag profile initializes as the δa dominant profile, and the impact of replacing a portion
of this profile with the δλ or δe dominant profile is evaluated analytically. This choice of initialization is
advantageous, as the lack of oscillating maneuvers will cancel out any effect on δvmin,δe and drag profiles
arranged symmetrically about the midpoint of the control window have a net-zero effect on δvmin,δλ. This
effectively decouples the effect of each single hybrid dominance case drag profile and corresponding delta-v
minimum from the other two, allowing direct comparisons between just two delta-v minima at a time. The
equation for δvmin,δa is updated from Eq. 28 for the initialization, given as

δvmin,δa =
nc

2
ac∆δa− 1

2
a2cn

2
c∆Bρ

approx(tf − t0) (34)

Replacing the δa dominant profile with the δλ dominant profile such that δvmin,δa = δvmin,δλ is formulated
through Eqs. 32 and 31 as

δvmin,δλ−∆δvδλ = δvmin,δa + 2∆δvδa (35)

δvmin,δλ − 2a2cnc∆Bρ
approx

− 1
2 Φ̂

J2
21m∆t2δλ/δa +∆tδλ/δa

ac∆δa0
(36)

= δvmin,δa + 2

(
1

2
a2cn

2
c∆Bρ

approx∆tδλ/δa

)
−Φ̂J2

21ma2cnc∆Bρ
approx

∆acδa0
∆t2δλ/δa +

(
2
a2cnc∆Bρ

approx

∆acδa0
+ a2cn

2
c∆Bρ

approx

)
∆tδλ/δa (37)

+ δvmin,δa − δvmin,δλ = 0

where ∆tδλ/δa is the length of the δλ dominant profile that will replace the δa dominant profile at both the
start and end of the control window. The relationship between δvmin,δa and δvmin,δλ is quadratic, requiring
root-finding to find if a valid solution exists. If root-finding does not result in any real or positive roots,
then no change should be made to the profile and ∆tδλ/δa = 0. To prevent the δλ dominant profile from
overshooting the δλ pseudostate, the portion of the δλ dominant profile required for δvmin,δλ = 0 is found as

δvmin,δλ −∆δvδλ = 0→ −Φ̂
J2
21ma2cnc∆Bρ

approx

∆acδa0
∆t2δλ/0 +

(
2
a2cnc∆Bρ

approx

ac∆δa0

)
∆tδλ/0 − δvmin,δλ = 0 (38)

where ∆tδλ/0 is the maximum length of the δλ dominant profile that can replace the δa dominant profile at
both the start and end of the control window.

Next, replacing the δa dominant profile with the δe dominant profile such that δvmin,δa = δvmin,δe is
formulated through Eqs. 33 and 31 as

δvmin,δe −∆δvδe =δvmin,δa + 2∆δvδa (39)

δvmin,δe −
a2cn

2
c∆Bρ

approx

π
∆tδe/δa =δvmin,δa + 2

(
1

2
a2cn

2
c∆Bρ

approx

(
1

2
∆tδe/δa

))
(40)

∆tδe/δa =
δvmin,δe − δvmin,δa

a2
cn

2
c∆Bρ

approx

π + 1
2a

2
cn

2
c∆Bρ

approx

(41)

where ∆tδe/δa is the length of the δe dominant profile that will replace the δa dominant profile both before
and after the midpoint of the control window. If Eq. 41 results in a negative value of ∆tδe/δa, then using
the δe dominant profile will only raise the overall delta-v minimum, and ∆tδe/δa = 0. The δe dominant
drag profile is centered on the middle of the control window because the δλ dominant profile must be at the
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start and end of the control window to be optimal, and the δe dominant profile does not have this time-based
constraint. This placement maximizes the lengths of both the δλ and δe dominant profiles that can be used
without overlap. To prevent the δe dominant profile from overshooting the δe pseudostate, the portion of the
δe dominant profile required for δvmin,δe = 0 is found as

δvmin,δe −∆δvδe = 0→ ∆tδe/0 =
δvmin,δe

a2
cn

2
c∆Bρ

approx

π

(42)

where ∆tδe/0 is the maximum length of the δe dominant profile that can replace the δa dominant profile both
before and after the midpoint of the control window.

If the sum of ∆tδλ/δa and ∆tδe/δa is greater than half of the control window, then the entire δa dominant
profile should be replaced by a combination of the δλ and δe dominant profiles. The effect of using the δλ
dominant profile is directly compared against the δe dominant profile, formulated through Eqs. 33 and 32 as

δvmin,δe−∆δvδe = δvmin,δλ −∆δvδλ (43)

δvmin,δe −
a2cn

2
c∆Bρ

approx

π
2

(
1

2
(tf − t0)−∆tδλ/δe

)
= δvmin,δλ

− 2a2cnc∆Bρ
approx

− 1
2 Φ̂

J2
21m(∆t2δλ/δe) + ∆tδλ/δe

ac∆δa0
(44)

−Φ̂J2
21ma2cnc∆Bρ

approx

∆acδa0
∆t2δλ/δe+

(
2
a2cnc∆Bρ

approx

∆acδa0
+ 2

a2cn
2
c∆Bρ

approx

π

)
∆tδλ/δe (45)

− a2cn
2
c∆Bρ

approx

π
(tf − t0) + δvmin,δe − δvmin,δλ = 0

where ∆tδλ/δe is the length of the δλ dominant profile at the start and end of the control window. The δe
dominant profile is used in the rest of the control window. Root-finding is again required. If there are no real
roots, the full δλ dominant profile should be used, and if no positive real roots are less than half of the control
window, the full δe dominant profile should be used.

If the sum of ∆tδλ/δa and ∆tδe/δa is not greater than half of the control window, then both replacements
can be accomplished without overlap. All in-plane delta-v minima are updated for this new profile. The final
step to form the full composite drag profile is to ensure that the remaining portion of the δa dominant profile
will not overshoot the δa pseudostate. If δvmin,δa < 0, then the length of the δa dominant profile should be
reduced, formulated through Eq. 31 as

δvmin,δa − 2∆δvδa = 0→ ∆tδa/0 =
δvmin,δa

2
(
1
2a

2
cn

2
c∆Bρ

approx
) (46)

where ∆tδa/0 is the length of the δa dominant profile that should be removed from the composite drag
profile. This removal is done symmetrically about the midpoint of the control window to negate any effect
on δvmin,δλ. A negative δvmin,δa at this final step indicates that the full in-plane pseudostate is reachable with
drag control alone, and this final accommodation bridges the gap between hybrid and drag-only control.

Using the equations and process presented above, optimal or near-optimal drag profiles for both hybrid
and drag-only control can be found in a single closed-form procedure. The full algorithm used to construct
the composite drag profile is detailed in Algorithm 1, which encompasses Eqs. 31-46. It is worth noting that
the composite profile will result in the previously found single hybrid dominance case optimal drag profiles
if one dominance case has a much higher delta-v minimum than the others. Once the drag profile is produced
by Algorithm 1, the pseudostate reached by drag control can be calculated and subtracted from the initial
pseudostate of the hybrid control problem. The propulsive control required to reach this reduced pseudostate
can be calculated by any optimal propulsive control solver without any additional information from the drag
profile. The most reasonable option to maintain computational efficiency and consistency of approach is the
closed-form impulsive algorithm designed by Chernick and D’Amico.20
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Algorithm 1: Composite Drag Profile Algorithm
Input: αc , ∆δαdesired , ∆Bρ

max , ∆Bρ
min , t0 , tf

Result: ∆Bρ
profile

1 Initialize ∆Bρ
profile as the optimal δa drag profile

2 Find optimal δe drag profile switching times: t2,i , t3,i ← Eqs. 24 and 26
3 δvmin,δa , δvmin,δλ , δvmin,δe ← Eqs. 34, 29, 30
4 ∆tδλ ← max( min( Eq. 37 real roots , Eq. 38 real roots ) , 0 )
5 ∆tδe ← max( min( Eq. 41 , Eq. 42 ) , 0 )
6 if ∆tδλ +∆tδe >

1
2 (tf − t0) then

7 ∆tδλ/δe ← Eq. 45 roots
8 if ∆tδλ/δe >

1
2 (tf − t0) or no real roots exist then

9 Apply full δλ dominant profile
10 else if ∆tδλ/δe < 0 then
11 Apply full δe dominant profile
12 else
13 Apply δλ dominant profile until ∆tδλ/δe after t0 and before tf
14 Apply δe optimal profile in remaining control window
15 endif
16 else
17 Apply ∆tδλ of δλ dominant profile after t0 and before tf
18 Apply ∆tδe of δe dominant profile before and after 1

2 (tf − t0)

19 endif
20 ∆δαpost-drag = ∆δαdesired −

∑m
i=1 Γ

drag(ti)∆Bρ(ti)dt
21 Update δvmin,δa , δvmin,δλ , δvmin,δe ← Eqs. 28, 29, 30
22 if δvmin,δa < 0 then
23 Reduce δa dominant drag profile by Eq. 46
24 Update δvmin,δa ← Eq. 28
25 endif

VALIDATION AND SIMULATIONS

The effectiveness of the proposed approach is verified in two ways. Given that the original control problem
in Eq. 13 is a linear program, generic interior point algorithms will provide baselines with which the closed-
form solutions can be compared for delta-v optimality and consistency with expected drag profiles. Both
the numerical and closed-form hybrid maneuver plans, as well as optimal propulsive-only plans, for a given
desired reconfiguration are then simulated in a full-force orbital propagator that integrates the GVE (4th
order Runge-Kutta) for perturbations including Earth’s gravity (30x30 gravity model), atmospheric drag,
solar radiation pressure, third body effects, and relativistic corrections. The orbital propagator takes as input
the osculating orbital elements for each spacecraft, transformed from the mean orbital elements using the
Brouwer transformation, and propagates each forward over a 10s time step.22 The resulting osculating orbital
elements are converted back into mean orbital elements for post-processing calculation of mean ROE. These
simulations will provide a baseline comparison of final state accuracy for the proposed approach. The chief
and deputy spacecraft used in these simulations are identical 3U CubeSats based on those that will be used on
the SWARM-EX mission, a major motivator of this work.1 These spacecraft are assumed to have a mass of
6kg, a maximum cross-sectional area of 0.09m2, a minimum cross-sectional area of 0.01m2, and a coefficient
of drag of 1.5. The initial mean orbital elements of the chief spacecraft are provided in vector form as

αc =
[
a e i Ω ω M

]
=

[
6798km 0.001 51◦ 0◦ 0◦ 90◦

]
(47)

The atmospheric density model used is the NRLMSISE-00 model, which provides variable atmospheric
density measurements based on Earth-Centered Earth-Fixed (ECEF) position, solar flux, and geomagnetic
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activity.23 To isolate the performance of the algorithm from the uncertainty of atmospheric density estimation,
the pseudostate achieved by any given drag profile through Eq. 12 is calculated with perfect knowledge of the
atmospheric density of each spacecraft, and corresponding augmented ballistic coefficient, at all simulation
time steps. A 200s time step is used to discretize the control window for drag control calculations. The
propulsive solver of the proposed closed-from hybrid control algorithm is the before-mentioned approach
derived by Chernick et al., referred to as the Chernick solver.20 This will also provide the propulsive-only
control solutions to gauge the cost savings of hybrid control over propulsive-only methods. Because the
Chernick solutions have not been evaluated for extended control windows, the numerical solver created by
Koenig et al., referred to as the Koenig solver, will also produce in-plane delta-v minima for comparison and
optimality evaluations.21 Numerically-computed hybrid control solutions for the original control problem
presented in Eq. 13 are provided by SDPT3 through CVX.24 Table 1 details the reconfigurations that will
be used to evaluate the various control approaches over a 30 orbit control window. Because differential drag
has a very small out-of-plane effect, only in-plane delta-v minima and trajectories are analyzed and plotted.
However for completeness, corresponding out-of-plane final state errors are also reported.

Deputy ROE acδa[m] acδλ[m] acδex[m] acδey[m] acδix[m] acδiy[m]

Case 1 Initial -300 -30000 250 1900 100 1800

Case 2 Initial 30 -75000 -20 1970 100 1800

Case 3 Initial 30 -6000 -20 1970 100 1800

Case 4 Initial -20 -2000 250 1980 100 1800

Desired 0 -5000 0 2000 0 2000

Table 1: Reconfigurations for control validation over a 30 orbit control window.

Drag Profile Optimality

The in-plane delta-v minima found by the differing control approaches for each reconfiguration in Table 1
are listed in Table 2, using Eqs. 28-30 for the Chernick solver and the proposed closed-form hybrid approach.
The differential drag control profiles calculated by the numerical solver and Algorithm 1 are illustrated in
Figure 6.

Control Approach Case 1 (m/s) Case 2 (m/s) Case 3 (m/s) Case 4 (m/s)

Impulsive (Koenig) δvmin 0.1690 0.2988 0.1597 0.0229

Impulsive (Chernick) δvmin 0.1690 0.2960 0.1597 0.0228

Hybrid (Numerical/CVX) δvmin 0.1157 0.2712 0.1226 0.0000

Hybrid (Closed-form) δvmin 0.1157 0.2693 0.1226 0.0036

Table 2: In-plane δvmin found by various control approaches for Table 1 validation reconfigurations.

Reconfiguration 1 is δa dominant with an in-plane hybrid δvmin of 0.1157m/s found by Algorithm 1 and
Eq. 28 with a drag profile that matches the δa dominant drag profile. This hybrid solution provides 0.0398m/s
delta-v cost savings (35.346%) over closed-form propulsive-only methods. Both the closed-form hybrid and
propulsive-only δvmin match those found numerically with at least 10−4 precision. The numerical hybrid drag
profile also results in exactly the same δa dominant drag profile as the closed-form profile.

Reconfiguration 2 is δλ dominant with an in-plane hybrid δvmin of 0.2693m/s found by Algorithm 1 and
Eq. 29 with a drag profile that matches the δλ dominant drag profile. The closed-form hybrid approach finds
0.0267m/s delta-v cost savings (9.020%) over closed-form propulsive-only control. The Algorithm 1 δvmin
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Figure 6: Differential drag profiles for Table 1 validation reconfigurations.

results in 0.0019m/s error with respect to the hybrid numerical solution, which is less than the 0.0028m/s
error between the closed-form and numerical propulsive-only solutions. Given that the Chernick closed-
form impulsive solutions were proven to be globally optimal through comparison with the Koenig solver,
the Algorithm 1 solution is globally optimal. While the closed-form drag profile differs from the numerical
solution for Reconfiguration 2, the delta-v minima in Table 2 demonstrate that these profiles result in nearly
equivalent propulsive costs. Furthermore, the profile found by Algorithm 1 is significantly more realizable
on a spacecraft when accounting for delays in attitude changes due to rotational dynamics.

Reconfiguration 3 is δe dominant with an in-plane hybrid δvmin of 0.1306m/s found by Algorithm 1 and
Eq. 30 with a drag profile that matches the δe dominant drag profile. The Algorithm 1 solution produces
0.0291m/s delta-v cost savings (18.222%) over closed-form propulsive-only control. Both the closed-form
hybrid and propulsive-only δvmin match those found numerically with at least 10−4 precision, and both drag
profiles exactly match the δe dominant drag profile.

Reconfiguration 4 corresponds to a nearly drag-only reconfiguration, requiring accommodations from all
three single hybrid dominance case drag profiles. The closed-form hybrid solution results in a remaining
δe dominant problem with a 0.0036m/s in-plane δvmin through Eq. 30 after applying the drag profile. This
is a significant difference from the approximately zero δvmin found by the numerical solver (∼ 10−8m/s).
However, this closed-form hybrid control cost is still greatly reduced from the propulsive-only solution, pro-
viding 0.0192m/s delta-v cost savings (84.211%). The drag profiles found by the closed-form and numerical
approaches also differ greatly. This is because the desired state is now reachable with drag-only control, such
that bang-bang control is no longer a valid assumption. The bang-bang assumption is fundamental to the cre-
ation of closed-form drag profile solutions, and the only real improvements that could be made to Algorithm
1 would be to use a more accurate approximation of ∆δvδe in Eq. 33 than the linear model used in this paper.
This would increase the complexity of the closed-form algorithm for an unknown δvmin benefit. Additionally,
like the profiles from Reconfiguration 2, the profile found in closed-form is significantly more realizable on
a spacecraft than the numerical solution for the drag profile.

Hybrid Control Performance

Performance of the various control approaches is evaluated by comparing their final state errors. The type
of reconfiguration that drives interest in hybrid control is a large change in along-track separation, corre-
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sponding to a δλ dominant reconfiguration. Therefore, Reconfiguration 2 is chosen for this analysis. The
in-plane ROE trajectories of the deputy spacecraft under Chernick impulsive control, numerically-solved hy-
brid control, and the proposed closed-form solutions for hybrid control are displayed in Figure 7, and the
final state error achieved by each control method is listed in Table 3.

Figure 7: In-plane ROE trajectories for Reconfiguration 2 under full-force dynamics model.

Control Approach acδa[m] acδλ[m] acδex[m] acδey[m] acδix[m] acδiy[m]

Impulsive (Chernick) 1.82 -411.22 -4.21 0.66 0.15 -43.84
Hybrid (Numerical/CVX) 2.78 -735.04 -6.88 7.51 -3.09 0.85

Hybrid (Closed-form) 1.82 -402.96 -4.49 3.39 -1.37 -48.33

Table 3: Final state error of control approaches for Reconfiguration 2 under full-force dynamics model.

Given perfect knowledge of the spacecraft augmented ballistic coefficients, the proposed closed-form hy-
brid approach provides very similar control accuracy across all mean ROE to that of closed-form propulsive
control. The trajectories are also very similar in Figure 7, with the effect of differential drag evident in the δa
plane and the delta-v savings produced by hybrid control demonstrated in the δe plane by the size of the first
maneuver from the initial state. The proposed hybrid approach demonstrates an unprecedented ability to ac-
curately solve fully optimal roto-translational maneuver planning in closed-form. Furthermore, the numerical
hybrid solution performs worse for in-plane ROE than either of the closed-form approaches, especially in the
along-track or δλ direction. The numerical solution also follows a very different trajectory in the δe plane.
These differences occur because the numerical solver finds propulsive maneuvers with components in both
the radial and tangential directions instead of just the tangential direction. These maneuvers have a larger
effect on the δλ pseudostate than tangential maneuvers alone, such that extra oscillations in the numerical
solution for Reconfiguration 2 in Figure 6 are required to accommodate the δe pseudostate as well as the δλ
pseudostate to reach the same optimal in-plane cost.

The out-of-plane errors present in both the Chernick and proposed closed-form hybrid solutions are due to
unmodelled changes in δiy that become significant over long control windows and are not a deficiency of the
closed-form hybrid approach. These unmodelled changes primarily affect out-of-plane optimal propulsive
maneuver timing, so inaccuracies could be mitigated by adding a heuristic to the control algorithm that
favors optimal out-of-plane maneuvers occurring near the start of the control window. From the standpoint
of passive safety, the reconfiguration still results in mostly parallel δe and δi vectors, so the loss in accuracy
does not necessarily cause a concern for possible spacecraft collision.16
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CONCLUSIONS AND FUTURE WORK

The future of Distributed Space Systems (DSS) will depend on increasingly optimal and accurate ma-
neuvering to enhance the capabilities and mission lifetime of each small spacecraft. This work contributes
directly to the state of the art by integrating propulsive and differential drag control to provide cost savings
for large, time-constrained reconfigurations over propulsive-only methods. By posing the control problem
in Relative Orbital Element (ROE) space, the relative dynamics of the spacecraft simplify to accurate linear
models. Given that the effect of differential drag can be controlled on-board through spacecraft differential
attitude, drag is incorporated into the control problem as a control force instead of a modification to the prop-
agation of translational ROE state. The effect of a given differential drag profile can be subtracted from the
original control problem to find a reduced remaining propulsive cost.

The application of reachable set theory produces optimality conditions for propulsive and drag control
that are evaluated simultaneously to find hybrid delta-v minimum reconfiguration costs and optimal drag
maneuver lengths. The reachable set itself is a geometric representation of the space of states that can be
reached by a combination of maneuvers in a given control window at a specified total cost. The dominance
case of a reconfiguration corresponds to the specific desired ROE that requires the highest cost to achieve,
which drives the minimum cost of the overall reconfiguration. The simplicity of the reachable sets and
corresponding limited number of reconfiguration dominance cases allows all globally optimal drag profiles
to be derived analytically. A flexible drag profile framework allows portions of each of these profiles to be
combined in closed-form under reasonable simplifying assumptions to create drag profiles for hybrid control
completely decoupled from propulsive control computations. This approach also bridges the gap between
hybrid and drag-only maneuver planning.

In general, hybrid control was shown to provide cost savings over propulsive-only methods. Specifically,
the proposed algorithm provides roto-translational control solutions for hybrid control in an algebraic frame-
work with high computational efficiency. These hybrid solutions were shown to provide provably global
optimality for many reconfiguration types when compared with numerical approaches. The hybrid solu-
tions also demonstrated the same final state accuracy performance as closed-form propulsive-only methods
for full-force orbital simulations with relevant perturbations in Low Earth Orbit (LEO), given perfect state
knowledge. The primary deficiency of hybrid control not covered by this paper is the drag control magnitude
error due to uncertainty in the augmented differential ballistic coefficient over long control windows. This
can be remedied with periodic control resolves throughout the control window, potentially with estimation
updates to improve the characterization of the augmented ballistic coefficient of each spacecraft. Another
potential flaw with the proposed approach is the assumption that propulsive and drag maneuvering can be
conducted simultaneously, given that a spacecraft typically needs to change its attitude to point the on-board
thrusters in any given direction. However, attitude changes to conduct propulsive maneuvers are relatively
short in duration compared with the control windows relevant for hybrid control. Combined with the low
thrust magnitude of differential drag, attitude maneuvering required for the propulsive maneuver plan can
simply override the drag maneuver plan with limited impact on the final state error of the reconfiguration.
The proposed algorithm’s ability to solve optimal roto-translational control in closed-form will allow these
advances to be implemented on a wide variety of spacecraft, including computationally-limited CubeSats and
nanosats used on missions like SWARM-EX. The hybrid control approach will extend mission lifetimes and
enhance reconfiguration capabilities for DSS in LEO.
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