
  

 

Abstract – This paper addresses the design of novel optimal 
closed-form multi-impulsive maneuvers for satellite formation-
flying and rendezvous. A new method to derive the state 
transition matrix for the relative motion in J2-perturbed 
eccentric orbits is shown and used to compute (semi-)analytical 
solutions for formation control. In addition, a delta-v lower 
bound for eccentric orbits is formulated which provides direct 
insight into the optimality of the control solutions. The 
functionality and performance of the resulting maneuvering 
schemes are numerically analyzed through comparisons with 
state-of-the-art optimal control. The results of this paper show 
how closed-form maneuver solutions have the potential to fulfil 
the requirements posed by future distributed space systems at a 
fraction of the computational cost and overall complexity. 

I. INTRODUCTION 

FORMATION-flying and rendezvous are key areas of 
research in modern spacecraft dynamics, navigation and 
control. Future distributed space systems (DSS) require the 
capability to control the relative motion between multiple 
spacecraft subject to ever more challenging requirements. 
These involve efficiency (on-board resources), autonomy (no 
or minimal ground-in-the-loop), and operational constraints 
(interference with payload, predictability) [1]. This work tries 
to fulfil the requirements posed by future DSS through the 
generalization and extension of simple closed-form solutions 
of the relative spacecraft dynamics. 

Previous research done by the authors has led to two flight 
demonstrations of autonomous formation keeping and 
reconfiguration, namely in the German TanDEM-X and 
Swedish PRISMA missions [2-3]. In addition, the relevant 
findings are being applied in the frame of upcoming on-orbit 
servicing missions (e.g., US mSTAR [1], German DEOS [4], 
German FireBird [5]). This paper builds on these results and 
improves the state-of-the-art by deriving optimal closed-form 
solutions for formation control in two relevant cases not 
available in literature, namely in 1) near-circular J2-perturbed 
orbits, and 2) unperturbed eccentric orbits. 

Several formation control algorithms have been described 
in the literature. So far, the solutions differ in their range of 
applicability (elliptical or near-circular orbits), their accuracy 
(inclusion of perturbations) and their mathematical approach 
(analytical or numerical). Tillerson et al. [6-7] proposed a 
fuel-optimal formation control algorithm based on convex 
optimization techniques. However, it only partially takes into 
account perturbations. Roscoe et al. [8] designed an optimal 
algorithm for elliptical perturbed orbits based on Pontryagin’s 
optimal control and Lawden’s primer vector theory [9]. This 
algorithm uses a discretization of the continuous-time optimal 
control problem and makes the discrete-time optimal 
maneuver times converge towards the continuous-time truly 
optimal ones. The issue is that it involves an iterative process 
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that depends on a good initial guess and the algorithm can 
yield large computational loads. Rogers et al. also uses linear 
optimal control to optimize maneuver planning in eccentric 
orbits [10]. As with most numerical methods, their approach 
is computationally expensive and therefore not necessarily the 
best solutions for a satellite onboard implementation. A 
closed-form solution for formation reconfiguration in 
elliptical orbit has been derived by Schaub [11-12]. However, 
perturbations are not taken into account and little to no 
considerations on optimality are made. Gaias and D’Amico 
[13-14] have designed a formation maneuvering scheme 
where perturbations are included through a layered approach 
in a global guidance problem. The resulting required changes 
of relative orbit elements (ROE) [15] are treated as several 
local control problems in which the impulsive maneuvers are 
computed in closed-form neglecting perturbations. Vaddi et 
al. [16] derived fuel-optimal impulsive solutions for 
formation reconfiguration, but they are all limited to near-
circular orbits with no perturbations taken into account. 

This paper offers five main contributions to the state-of-
the-art. First of all, a new simple method to derive the state 
transition matrix (STM) for mean ROE in perturbed orbits of 
arbitrary eccentricity is derived. The resulting STM is 
characterized by unprecedented simplicity as compared with 
other solutions available in literature [17]. Second, this paper 
extends the well-known three-impulse optimal in-plane ROE 
reconfiguration solution [13-14] to J2-perturbed near-circular 
orbits. Perturbations included are limited to the secular 
effects, while short-period variations are neglected. Third, a 
semi-analytical optimal solution for formation 
reconfiguration in unperturbed eccentric orbits is derived. 
Fourth, a delta-v lower bound for formation reconfiguration 
in eccentric orbits is found, which provides the absolute 
minimum necessary fuel cost for any given reconfiguration. 
Finally, the optimality of the solutions are numerically 
verified by comparing the costs achieved by the closed-form 
solutions with an optimal control algorithm based on primer 
vector theory [8]. 

II. RELATIVE MOTION DYNAMICS FOR FORMATION FLYING 

This section describes the relative dynamics of a deputy 
with respect to a chief spacecraft in J2-perturbed eccentric 
orbits. A new STM is derived in mean ROE-space including 
secular perturbations due to J2 effects. Step-wise 
simplifications are later made to conveniently describe the 
relative dynamics in near-circular orbits or non-perturbed 
eccentric orbits. 

A.  J2-Perturbed Relative Dynamics 

The motion of the deputy relative to the chief satellite is 
described using the set of ROE introduced by D’Amico [15] 

S. D’Amico is an Assistant Professor with the Department of Aeronautics 
and Astronautics at Stanford University, Stanford, CA 94305 USA (phone: 
650-497-4682; e-mail: damicos@stanford.edu). 

Lucas Riggi and Simone D’Amico 

Optimal Impulsive Closed-Form Control for Spacecraft 
Formation Flying and Rendezvous 



  

 

ࢻߜ  ൌ

ۉ

ۈۈ
ۈ
ۇ

ܽߜ
ߣߜ
௫݁ߜ
୷݁ߜ
୶݅ߜ
ی୷݅ߜ

ۋۋ
ۋ
ۊ
ൌ

ۉ

ۈ
ۈ
ۇ

ሺܽୢ െ ܽୡሻ ܽୡ⁄
ୢݑ െ ୡݑ  ሺΩୢ െ Ωୡሻcos݅ୡ

݁ୢcoୢ߱ݏ െ ݁ୡcos߱ୡ
݁ୢsin߱ୢ െ ݁ୡsin߱ୡ

݅ୢ െ ݅ୡ
ሺΩୢ െ Ωୡሻsin݅ୡ ی

ۋ
ۋ
ۊ

, (1) 

 
where the subscripts c and d denote quantities of the chief and 
deputy spacecraft respectively. The classical Keplerian orbit 
elements are denoted by ܽ, ݁, ݅, Ω,  and mean argument of ,ܯ,߱
latitude is ݑ ൌ ܯ  ߱. The so-called in-plane ROE, ࢋߜ ,ߣߜ ,ܽߜ, 
correspond to the relative semi-major axis, relative mean 
longitude, and relative eccentricity vector, whereas the so-
called out-of-plane ROE, ߜ, is the relative inclination vector. 
The state of choice is non-singular for circular orbits (ec = 0), 
but still singular for equatorial orbits (ic = 0). Similar to Gaias 
et al. [18], the secular perturbations caused by J2 on the 
individual orbit elements can be incorporated as 
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For small ROE as defined by (1), ࢻߜሶ  can be expanded about 
the chief (reference) orbit to first order using a Taylor 
expansion 
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where ࡶ is the contribution to the system (or plant) matrix 
due to J2 only. Including un-perturbed Keplerian dynamics, 
the full system matrix becomes 
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where the subscript c has been dropped and 
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are constant coefficients which depend on ݅ and ݁. The only 
slow time-varying parameter in (5) is the reference argument 
of perigee. For small step sizes, as encountered in navigation 
[3], the STM can be approximated as 
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For longer step sizes, as encountered in propagation and 
maneuver planning, one can directly solve for the integral of 
the plant matrix through a change of variables to obtain a 

time-invariant plant [19]. As a consequence, (8) can be 
derived in closed-form and show a linear trend of all ROE 
except ࢋߜ which rotates as a harmonic oscillator, and 
,ܽߜ  which are constants. The full solution of the linearized	௫݅ߜ
dynamics of relative motion incorporates an arbitrary number 
of impulsive delta-v maneuvers during the reconfiguration 
from ࢻߜሺݐሻ ൌ ிሻݐሺࢻ  toࢻߜ ൌ  ி as [13]ࢻߜ
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where  is the control input matrix given by the Gauss 
Variational Equations (GVE) [12] for the ith impulse and ࢞ is 
the vector of all impulsive delta-vs executed by the deputy in 
the Hill’s Radial, Tangential, Normal (RTN) frame. Here, due 
to the linearization assumptions, mean and osculating orbit 
elements are assumed identical as used in the GVE. For the 
rest of this paper, the quantities on the right side of (9) are 
assumed known from the desired reconfiguration problem. 

B. ܬଶ-Perturbed Relative Motion in Near-Circular Orbits 

For small eccentricity of the chief (or reference) orbit, the 
STM can be simplified to [15] 

 

, ൌ

ۉ

ۈ
ۈ
ۈ
ۇ

1 0 0 0 0 0
െయ

మ

ಿ∆ݑଶ,ଵ 1 0 0 	ഋಿ∆ݑଶ,ଵ 0

0 0 cosሺകሶ
ಿ
ଶ,ଵሻݑ∆ െsinሺകሶ

ಿ
ଶ,ଵሻݑ∆ 0 0

0 0 sinሺകሶ
ಿ
ଶ,ଵሻݑ∆ cosሺകሶ

ಿ
ଶ,ଵሻݑ∆ 0 0

0 0 0 0 1 0
0 0 0 0 	ഊಿ∆ݑଶ,ଵ ی1

ۋ
ۋ
ۋ
ۊ

, (10) 

 
where u2,1 = u2 – u1 is the shift of chief’s mean argument of 
latitude and 
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The effects of an impulse at a specific mean argument of 
latitude u are given by the GVE as [15] 
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It is noteworthy that the effects of out-of-plane maneuvers (N) 
are fully decoupled from in-plane maneuvers (R-T) due to our 
choice of ROE. 

C. Simplifications for Non-Perturbed Eccentric Orbits 

For non-perturbed eccentric orbits it is convenient to 
replace the relative mean longitude ߣߜ with a modified state 
parameter 
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which is referred to as modified relative mean longitude. This 
choice eliminates the effects of a tangential impulse (T) on the 
modified relative mean longitude, thus simplifying greatly the 
dynamics of the reconfiguration. The STM reduces to 
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and the effects of an impulsive burn executed at a specific true 
anomaly ߥ on the ROE are given by [12] 
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where ߠ ൌ ߥ  ߱ is the true argument of latitude of the 
maneuver. 

III. CONTROL IN PERTURBED NEAR-CIRCULAR ORBITS 

This section focuses on near-circular chief orbits using the 
dynamics described by (10-12). The three-impulse tangential 
optimal solution given by Gaias and D’Amico [13] is 
extended to the case of perturbed orbits, including secular J2 
effects. Additionally, an optimal impulsive maneuver for 
perturbed out-of-plane reconfigurations is derived in closed-
form. 

A.  In-Plane Reconfiguration 

The following delta-v lower bound for the in-plane ROE 
reconfiguration in near-circular orbit has been derived from 
the GVE [13] 
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where |∆ܽߜ∗| is the maximum between the aimed direct 
change in relative semi-major axis and the change in relative 
semi-major axis that allows a drift in relative mean longitude 
to accomplish the aimed change in ߣߜ over the time span of 
the reconfiguration. If ܽߜ୲୰ୟ୬ୱ is the relative semi-major axis 
needed for the drift to achieve |∆ߣߜ| in the available 
reconfiguration span Δݑ୰ୣୡ୭୬, then 
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An immediate consequence of (16), is that the optimal 

reconfiguration maneuver corresponds to a minimum path 
problem in the ROE state-space, as illustrated in Fig. 1. If the 
desired change in the drift coefficient |∆ܽߜ∗| is dominant, the 
fuel-optimal maneuvers must minimize the reconfiguration 
path length in the plane ሺߣߜ,  ሻ, see Fig. 1 (right). If theܽߜ
change in the shape of the relative orbit ‖∆ࢋߜ‖ is dominant, 
the optimal maneuvers must minimize the reconfiguration 
path length in the ࢋߜ plane, see Fig. 1 (left). From (12), if the 
required change of ࢋߜ is dominant, fuel optimality is 
guaranteed by three tangential delta-vs separated by half orbit 
period with the first pulse at ݑത୧୮ ൌ atan ቀ

ఋ
ఋೣ

ቁ, see Fig. 1 [13]. 

Earth’s oblateness J2 effects induce a rotation of ࢋߜ (Fig. 

2) during the reconfiguration time span. The resulting 
evolution of ࢋߜ with three tangential impulses is given by 
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and Δࢋߜ is the effect of a tangential burn at a location ݑ on 
 given by (12). Equation (19) can be re-written as ࢋߜ
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Following (21-23), a change of variable is introduced which 
transfers the effects of J2 from the equations to the variables. 
This is highlighted in Table 1 through bold fonts. As a result, 
the equations of the perturbed and ideal reconfiguration retain 
the same form and structural solution. In particular the burns 
have to occur at 
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ா
ሻ, and the delta-v sizes are given in Tables 

2-3. For instance, if ഥܷ ∈ ሾ0, 2ሾ and ݇/ߨ ൌ 0,1,3 is chosen, then 
ܤ ൌ ሺ	the signs of cos ,ܧ ܷሻ are ( െെሻ and the delta-vs are 
given by the first line of Table 2. 
 
B.    Out-of-Plane Reconfiguration 

From (12), it is evident that a single delta-v is necessary 
and sufficient to achieve the aimed end-condition in the 
relative inclination vector ߜ.  

 
Figure 1. Formation reconfiguration in ROE state-space 

 
Figure 2. Effect of ܬଶ on relative eccentricity vector during reconfiguration 



  

Neglecting perturbations, the location and magnitude of 
the single cross-track maneuver are ݑതே ൌ atanሺഃ

ഃೣ
ሻ and |ݔே| ൌ

 ௬ changes݅ߜ ,respectively [13]. In the presence of J2 ,‖ߜ∆‖ܽ݊
as a linear function of time as illustrated in Fig. 3. This leads 
to a combination of trigonometric and linear functions in the 
dynamics equation governing ݅ߜ௬. Geometrically, the natural 
drift in ݅ߜ௬ before and after the maneuver must accumulate 
such that a single impulse provides the aimed change in 
relative inclination vector as derived from (12) 
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As a consequence, the location of the impulse is the solution 
of the following transcendental equation for which there is no 
analytical solution 
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However, the ideal solution ݑே,ௗ ൌ atan ቀഃ

ഃೣ
ቁ for the 

unperturbed case can be used as a first guess to evaluate the 
effects of J2 during the reconfiguration as shown in Table 4. 

This tentative maneuver location can be used to find an initial 
 ே to be refined iteratively though a better approximation ofݑ
the effects of J2 at each iteration. In practice, only one 
iteration is sufficient. Once the location ܰݑ has been 
computed, the corresponding delta-v is found using (33). 

IV. CONTROL IN ECCENTRIC ORBITS 

Fuel-optimal maneuvers in eccentric orbits have been 
addressed in literature using numerical optimization [10] or 
iterative optimal control algorithms [8]. In contrast, here 
closed-form solutions for fuel-optimal relative orbit control 
maneuvers are sought. In particular, an optimal semi-
analytical solution is derived for reconfigurations 
characterized by ‖∆ࢋߜ‖   This directly extends .|∗ܽߜ∆|
previous work done in near-circular orbits. 

A. Delta-v Lower Bound in Eccentric Orbits 

This section addresses the delta-v lower bound in 
eccentric orbits which represents the absolute minimum 
required delta-v for any given reconfiguration. The most 
efficient maneuver direction for a given change in ROE can 
be found by comparing the normalized effects of a unit size 
delta-v on the ROE. From (15), the minimum radial burn for 

TABLE 1. DYNAMICS EQUATIONS OF THE IN-PLANE RECONFIGURATION IN NEAR-CIRCULAR ORBITS 
 Perturbed reconfiguration Ideal reconfiguration 

Dynamics Equations 
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TABLE 2. DELTA-V SOLUTIONS FOR IN-PLANE RECONFIGURATION IN NEAR-CIRCULAR ORBITS 

Aimed end-conditions Choice of ݇ ݔ ൌ
ܣܾ  ܤ݃

4ܾ
 

 B b Signs + - -, - - +, - + - + - +,+ + -, - + +
ഥܷ ∈ ሾ0,  2ሾ/ߨ
ഥܷ ൌ  2/ߨ

E 
F 

cos ഥܷ 
sin ഥܷ 

sign(cos ܷ) 
sign(sin ܷ) 

݃ ൌ 1 ݃ ൌ െ1 

ഥܷ ∈ሿ2/ߨ, ሾ E cosߨ ഥܷ sign(cos ܷ) ݃ ൌ െ1 ݃ ൌ 1 
 

TABLE 3. DELTA-V COMPUTATION 
Signs ݔ D Delta-v expressions 
+ - - 
ᇱଵ 12ܾሺ்ݔ + + - െ ݈ᇱሻ ்ݔଶ ൌ െሺ4ܾܮᇱ  3݃ሺݍᇱ െ ݈ᇱሻܤ  3ܾሺݍᇱ  ݈ᇱሻܣሻ/ܦ 

ଷ்ݔ ൌ ሺ4ܾܮᇱ  3݃ሺݍᇱ െ ܤᇱሻ  3ܾሺݍᇱ  ܦ/ሻܣᇱሻ
- - + 
′ݍଷ 12ܾሺ்ݔ - + + െ ଵ்ݔ ᇱሻ ൌ െሺ4ܾܮᇱ െ 3݃ሺᇱ െ ݈ᇱሻܤ  3ܾሺᇱ  ݈ᇱሻܣሻ/ܦ 

ଶ்ݔ ൌ ሺ4ܾܮᇱ െ 3݃ሺݍᇱ െ ݈ᇱሻܤ  3ܾሺݍᇱ  ݈ᇱሻܣሻ/ܦ
- + - 
ᇱݍଶ 12ܾሺ்ݔ + - + െ ݈ᇱሻ ்ݔଵ ൌ െሺ4ܾܮᇱ  3݃ሺᇱ െ ݈ᇱሻܤ  3ܾሺᇱ  ݈ᇱሻܣሻ/ܦ 

ଷ்ݔ ൌ ሺ4ܾܮᇱ െ 3݃ሺݍᇱ െ ܤᇱሻ  3ܾሺݍᇱ  ܦ/ሻܣᇱሻ

 
Figure 3. Effect of ܬଶ on relative inclination vector during reconfiguration 

TABLE 4.OUT-OF-PLANE IMPULSE LOCATION IN NEAR-CIRCULAR ORBITS

 ଶ effectsܬ
included 

Type of solution Location of out-of-plane impulse 

No Analytical ݑே,ௗ ൌ ሺ݊ܽݐܽ
ூ
ሻ 

Yes Numerical ݊ܽݐሺݑேሻ 
ఒ
ே
ሺݑி െ ேሻݑ ൌ


ூ
 

Yes 
Iterative / Quasi-

analytical 

Initialization: 

ேሻݑሺ݊ܽݐ 
ఒ
ே
ሺݑி െ ௗሻݑ ൌ


ூ
 

Iterations: 

ேݑሺ݊ܽݐ
ାሻ  ఒ

ே
ሺݑி െ ேݑ

ିሻ ൌ 
ூ
 



  

a change in ܽߜ occurs at ߥ ൌ  and its normalized effect is 2/ߨ
given by మ

ആ
݁. Similarly, the minimum tangential burn for a 

change in ܽߜ occurs at ߥ ൌ 0 (i.e., at the perigee), where the 
velocity is maximum and tangent to the orbit. Its normalized 
effect is given by మ

ആ
ሺ1  ݁ሻ  మ

ആ
݁. Therefore, the most efficient 

tangential burn is always smaller than the most efficient radial 
burn. As in near-circular orbits, the aimed ߣߜ′ can be achieved 
through a tangential burn by introducing the drift coefficient 
for the appropriate duration of the reconfiguration. Equation 
(15) provides the normalized effect of an impulse on ࢋߜ as 
well. The effect of a radial burn is constant and equal to ߟ. 
The effect of a tangential burn is equal to 

ߟ
ඥሺଶା௦ఔሻమାమା2݁ሺଶା௦ఔሻ௦ఔ

ଵା௦ఔ
. The minimum of this function 

is equal to 2ߟ at ߥ ൌ  Thus, a tangential burn .(integer ݇) ߨ݇
always has at least twice the effect on ࢋߜ as compared with a 
radial burn. Based on these considerations, we can derive a 
delta-v lower bound for any given in-plane reconfiguration 
using tangential impulses. From (15), for a desired change 
 the minimum delta-v is given by ,|ܽߜ∆|

 
หݔ,୫୧୬ห|∆ఋ| ൌ

ఎ

ଶሺଵାሻ
 (34) .|ܽߜ∆|ܽ݊

 
The |ܽߜ୲୰ୟ୬ୱ| needed to achieve an aimed |∆ߣߜ′| over a 
reconfiguration of duration Δܯ୰ୣୡ୭୬ is given by 

 
|୲୰ୟ୬ୱܽߜ|   ൌ

ଶ

ଷெ౨ౙ
 (35) ,|′ߣߜ∆|

 
thus the minimum delta-v to achieve |∆ߣߜ′| is 
 

หݔ,୫୧୬ห|∆ఋఒ| ൌ
ఎ

ଷሺଵାሻெ౨ౙ
 (36) .|′ߣߜ∆|ܽ݊

 
Equivalently, for a change ‖Δࢋߜ‖ the minimum delta-v is 
found from (15) as 
 

หݔ,୫୧୬ห‖ఋࢋ‖ ൌ
ଵ

ଶఎ
݊ܽ‖Δ(37) .‖ࢋߜ 

 
Therefore, the delta-v lower bound for an in-plane 
reconfiguration in eccentric orbits is given by the หݔ,minห 
corresponding to the dominant desired change in ROE 
 

ݒߜ                   ൌ max ቀ
ఎ

ଶሺଵାሻ
,|∗ܽߜ∆|ܽ݊

ଵ

ଶఎ
݊ܽ‖Δࢋߜ‖ቁ (38) 

 
where  
 

|∗ܽߜ∆| ൌ maxሺ|ܽߜி െ ,|ܽߜ ிܽߜ| െ ,|୲୰ୟ୬ୱܽߜ ୲୰ୟ୬ୱܽߜ| െ  , |ሻܽߜ
 

and ܽߜ୲୰ୟ୬ୱ is given in (35). This newly derived delta-v lower 
bound is the direct extension to eccentric orbits of the lower 
bound given by (16) for near-circular orbits. In the latter case, 
ߟ ൎ 1, ݁ ൎ 0 and the expressions become identical. 

B. In-Plane Reconfiguration 

In accordance with the derivation above, we will try to 
find a closed-form solution to the reconfiguration problem 
using tangential burns only. A three-impulse maneuvering 
scheme guarantees enough degrees of freedom to achieve any 
aimed change in relative orbital elements and the dynamics 
equations are derived from (9) as 

 

ሺ1  ݁cosߥଵሻ்ݔଵ  ሺ1  ݁cosߥଶሻ்ݔଶ  ሺ1  ݁cosߥଷሻ்ݔଷ ൌ ܣߟ 2⁄ , 
 
 

െ3ሺ1  ݁cosߥଵሻሺܯி െܯଵሻ்ݔଵ െ 3ሺ1  ݁cosߥଶሻሺܯி െܯଶሻ்ݔଶ െ
3ሺ1  ݁cosߥଷሻሺܯி െܯଷሻ்ݔଷ ൌ  ,ܮߟ

 
 

ሺଶାୡ୭ୱఔభሻୡ୭ୱఏభାೣ
ଵାୡ୭ୱఔభ

ଵ்ݔ 
ሺଶାୡ୭ୱఔమሻୡ୭ୱఏమାೣ

ଵାୡ୭ୱఔమ
ଶ்ݔ 

ሺଶାୡ୭ୱఔయሻୡ୭ୱఏయାೣ
ଵାୡ୭ୱఔయ

ଷ்ݔ ൌ

ܧ ߟ െ ݁௬ܬ ⁄⁄tan݅ߟ , 
 

ሺଶାୡ୭ୱఔభሻୱ୧୬ఏభା
ଵାୡ୭ୱఔభ

ଵ்ݔ 
ሺଶାୡ୭ୱఔమሻୱ୧୬ఏమା

ଵାୡ୭ୱఔమ
ଶ்ݔ 

ሺଶାୡ୭ୱఔయሻୱ୧୬ఏయା
ଵାୡ୭ୱఔయ

ଷ்ݔ ൌ

ܨ ߟ  ݁௫ܬ ⁄⁄tan݅ߟ , 

(39) 
 
An analytical solution for the three impulses is found by 

inverting the first three equations of (39) 
 

ଵ்ݔ ൌ
మయ
భమయ

, ଶ்ݔ ൌ
ିభయ
భమయ

, ଷ்ݔ ൌ
భమ
భమయ

, (40)	

 
ܭ ൌ ܯtanሺ݅ሻሾ൫ߟ6 െ ൯ܯ ݂ ݂݃  ሺܯ െ ሻܯ ݂ ݂݃  ሺܯ െ ሻܯ ݂ ݂ ݃ሿ 

݄ ൌ ଶ൫ߟܮ2 ݂݃ െ ݂݃൯  6൫ܯ െ ൯ܯ ݂ ݂ ሾܧtanሺ݅ሻ െ  ௬ሿ݁ܬ
3ߟܣଶ tanሺ݅ሻ ሾሺܯி െ ሻܯ ݂݃ െ ሺܯி െܯሻ ݂ ݃ሿ  (41) 

݂ ൌ 1  ݁cosሺߥሻ 
݃ ൌ ሾሺ1  ݂ሻ ሻߠሺݏܿ  ݁௫ሿ/ ݂ 

 
Equations (40-41) depend on the unknown locations of the 

three maneuvers. The locations that minimize the magnitude 
of the delta-v vector and satisfy the last of (39) can be found 
in the case that ‖Δࢋߜ‖ is dominant by ensuring a minimum 
path in ROE state-space as illustrated in Fig. 4. The control 
equations for the relative eccentricity vector are derived from 
(9) as  

 
൫2݁ݔcosߠ݁ݕsinߠ൯cosߠ݁ݔ

1݁ݔcosߠ݁ݕsinߠ
ܶݔ ൌ ܧ ߟ െ ܬݕ݁ ⁄⁄tan݅ߟ  , (42) 

൫2݁ݔcosߠ݁ݕsinߠ൯sinߠ݁ݕ
1݁ݔcosߠ݁ݕsinߠ

ܶݔ ൌ ܨ ߟ  ܬݔ݁ ⁄⁄tan݅ߟ  . (43) 

 
The ratio between (42) and (43) gives a relationship for the 
true arguments of latitude ݅ߠ of the burns 

 

ߠ݊ܽݐ
ଵା


൫మశೣౙ౩ഇశ౩ഇ൯౩ഇ

ଵା
ೣ

൫మశೣౙ౩ഇశ౩ഇ൯ౙ౩ഇ

ൌ
ி୲ୟ୬ሺሻାೣ

ா୲ୟ୬ሺሻି
. (44) 

 
Equation (44) can be solved numerically for the fuel-optimal 
maneuver locations. Good initial conditions for a numerical 
solver are the locations of the burns for near-circular orbits, 
ߠ ൌ atan൫ಷ

ಶ
൯  ݇ߨ. The choice of integers ݇ allows to select 

the maneuver locations among all the available solutions, thus 
simplifying the compliance with operational constraints. 

C. Out-of-Plane Reconfiguration 

The dynamics of an out-of-plane reconfiguration in 
eccentric orbits is derived from (9) as follows 

 
Figure 4. Optimal reconfiguration in ݁ߜ௫ െ  ௬ plane݁ߜ



  

ேݔߟ
ೞഇ

భశೞഌ
ൌ  (45)  ܫ

ேݔߟ
ೞഇ

భశೞഌ
ൌ  (46)  ܬ

 
One cross-track delta-v is necessary and sufficient to satisfy 
the aimed end-conditions. By looking at the ratio between 
(45) and (46), the location of the normal impulse is given by 
 

tanሺߠேሻ ൌ


ேߠ	ݎ	 ൌ atan൫


൯   (47) .ߨ݇

 
The integer ݇ has to be chosen so to minimize ݔே, or 
equivalently to minimize ሺ1   ,ሻ. From its definitionܰߥݏܿ݁
ேߥ ൌ 	atan൫


൯ െ ߱   it is found that ݇ has to be odd if ,ߨ݇

cosൣatan൫

൯ െ ߱൧  0, or even in the other cases. Such a choice 

ensures that the relative inclination vector is changed in the 
proper direction. The magnitude of the impulse can be 
computed from (45-46). 

V. NUMERICAL SIMULATIONS 

This paper has derived a number of (semi-)analytical fuel-
optimal impulsive control schemes which are numerically 
validated in this section. Extensive simulations have been 
carried out on a number of reconfigurations. The numerical 
simulation scheme is illustrated in Fig. 5. The maneuver’s 
size and location are computed from the mean initial ROE and 
from the desired target ROE at the end of the reconfiguration. 
A numerical integration of the equations of motion is 
performed for each spacecraft orbit in osculating space by 
applying the impulsive maneuvers as discontinuities of the 
deputy’s velocity. At the end of the propagation, a 
comparison is made between the achieved and desired mean 
ROE to evaluate functionality and performance. In addition, 
the reconfiguration results obtained from the closed-form 
solutions are compared with an optimal control algorithm 
designed by Roscoe et al. [8] as illustrated in Fig. 6. Based on 
Pontryagin’s optimal control theory, it iteratively solves the 
discrete-time optimal control problem and refines the solution 
as from Lawden’s primer vector theory. This is done by 
adding, removing, or moving impulsive maneuvers so to 
converge towards the continuous-time optimal solution. 
Although the output of this algorithm is the truly optimal 
impulsive maneuver, it suffers from complexity, poor 
convergence properties, computational effort, and is only 
used as a reference for comparison in the following. 

A. In-Plane Control in Perturbed Near-Circular Orbits 

 As a first step, we use an example reconfiguration to 
compare the closed-form control solutions (Tables 2-3) in the 
presence or absence of perturbations. The example in-plane 
reconfiguration requires a transfer from ܽࢻߜ ൌ
ሾ50,െ10000, 230,െ50ሿ m to ܽࢇߜி ൌ ሾ0,െ9800,150,0ሿ m, 
within a time frame of 7.5 orbits. This corresponds to a 
reconfiguration where all the in-plane ROE are affected with 
a dominant change in the relative eccentricity vector. The 
reference orbit is circular at an altitude of 750 km. 

The evolution of the in-plane ROE is shown in Fig. 7 where 
start and end states are tagged with 0 and F respectively. Note 
the rotation of the eccentricity vector between the burns. The 
accuracy of the reconfiguration for each in-plane ROE is 
listed in Table 7. The gain in reconfiguration accuracy is 
evident when the perturbations are included in the closed-
form control solution. Figure 8 shows the behavior of the truly 
optimal solution from primer vector theory. The location of 
the impulses computed by the closed-form solution are 
indicated by red circles in Fig. 8. The optimum control 
algorithm gives multiple solutions corresponding to the peaks 
of the primer vector separated by half orbit period as expected 
from the closed-form solution. The indicated closed-form 
results correspond to a maximum of the primer vector with an 
arbitrary choice of ݇  ൌ 0,1,14 from (24). In contrast with the 

TABLE 5. IN-PLANE CONTROL SOLUTION IN ECCENTRIC ORBITS

Unknown 
Type of 
solution 

Solution 

Locations 
 ߠ

Numerical 
ߠ݊ܽݐ

1 
݁௬

൫2  ݁௫cosߠ  ݁௬sinߠ൯sinߠ

1 
݁௫

൫2  ݁௫cosߠ  ݁௬sinߠ൯cosߠ

ൌ
tanሺ݅ሻܨ  ݁௫ܬ
tanሺ݅ሻܧ െ ݁௬ܬ

 

Magnitudes 
 ்ݔ

Analytical ்ݔଵ ൌ
݄ଶଷ
ଵଶଷܭ

, ଶ்ݔ ൌ
െ݄ଵଷ
ଵଶଷܭ

, ଷ்ݔ ൌ
݄ଵଶ
ଵଶଷܭ

 

TABLE 6. OUT-OF-PLANE CONTROL SOLUTION IN ECCENTRIC ORBITS

Unknown Type of solution Solution 

Location ߠே Analytical ߠே ൌ atan ቀ
ூ
ቁ 

Magnitude ݔே Analytical 
ேݔ ൌ

ଵାୡ୭ୱఔಿ
ఎୡ୭ୱఏಿ

ܫ  

ேݔ	ݎ ൌ
ଵାୡ୭ୱఔಿ
ఎୱ୧୬ఏಿ

 ܬ

 
Figure 5. Diagram of the numerical simulation scheme 

 

 
Figure 6. Optimal control algorithm 

TABLE 7. IN-PLANE ROE RECONFIGURATION ERROR 

ROE No perturbation Perturbations included 
ܽߜܽ 0.005% 0.005% 
ߣߜܽ 0.8% 0.347% 
௫݁ߜܽ 1.5% 0.14% 
 ௬ 5.4% 0.468%݁ߜܽ

   

 
Figure 7. Evolution of in-plane ROE during example reconfiguration 



  

optimal control approach, the closed-form approach allows 
for a convenient choice of ki to eventually comply with 
operational constraints. 

Extensive simulations were run to systematically compare 
the delta-v outputs from the closed-form and optimal control 
methods. Fig. 9-10 show such comparisons in terms of 
absolute delta-v (in cm/s) and the relative difference (in %). 
Fig. 9 shows the case where the dominant change is ‖Δ݁ߜ‖, 
which is used as independent variable with constant  |Δܽߜ| ൌ
0. As expected, the required delta-v is proportional to ‖Δࢋߜ‖ 
(Fig. 9, left) and the closed-form solution gives the same 
delta-v as from the optimal control (Fig. 9, right). Indeed, the 
delta-v from the closed-form solution is slightly lower 
(~0.5%) in average than the optimal control output. This 
illustrates the fact that the iterative optimal control algorithm 
has convergence deficiencies. Fig. 10 shows simulation 
results where ܽ‖Δࢋߜ‖ ൌ 100	m and |Δܽߜ| varies as 
independent variable. As expected, as long as |Δܽߜ| ൏
‖Δࢋߜ‖, the required delta-v is constant (‖Δࢋߜ‖ is constant, Fig. 
10, left) and the closed-form solution is optimal (Fig. 10, 
right). For |Δܽߜ|  ‖Δࢋߜ‖, the delta-v results proportional to 
|Δܽߜ| and the closed-form solution is sub-optimal. In 
particular, the analytical delta-v is larger than the optimal 
delta-v by an offset of 7%. A new closed-form solution needs 
to be derived for this case. As from Fig. 1, a sufficient 
condition for optimality is that all the delta-vs have the same 
sign, so that the change |Δܽߜ| is covered by arrows of the same 
direction.  

B. Out-of-Plane Control in Perturbed Near-Circular Orbits 

The example reconfiguration used for out-of-plane control 
transfers the formation from ܽߜ ൌ ሾ50,50ሿ	m to ܽߜி ൌ
ሾ25,100ሿ	m over 7.5 orbits. Figure 11 shows the satellite 
relative motion in the T-N plane of the Hill’s frame as well as 
the evolution of ߜ during the reconfiguration. Table 8 lists 
the reconfiguration errors by comparing actual and aimed ߜ. 
Similar to Section V.A, the closed-form solution is validated 
by comparing the delta-v output with the optimal control 
algorithm. Fig. 12 shows such comparison for different values 
of ‖Δߜ‖. As expected, the cost is proportional to the change 
in ROE and the analytical delta-v never exceeds the optimal 
value by more than 0.4%. 

C. In-Plane Control in unperturbed Eccentric Orbits 

The example reconfiguration is the same used in Section 
V.A, however the reference eccentricity is increased to 0.2. 
Here, no perturbations are included, so that the closed-form 
solution described in IV.B can be tested. Fig. 13 shows the in-
plane ROE during the reconfiguration. The optimality of the 
solution is evident from the fact that the relative eccentricity 
vector moves along the shortest path from the initial to the 
aimed end-condition. As expected, the locations of the closed-
form maneuvers occur at the maxima of the primer vector. 
The initial locations of the maneuvers were computed from 
ߠ ൌ atanሺܧ/ܨሻ  ݇ߨ with ݇ ൌ 0, 1, 14.  

For completeness, Fig. 14-15 show the reconfiguration 
results for an orbit eccentricity of 0.6. In the case ఎ

ሺଵାሻ
|Δܽߜ| ൏

ଵ

ఎ
‖Δࢋߜ‖ (Fig. 14), the closed-form solution is fuel-optimal and 

the required delta-v is proportional to ‖Δࢋߜ‖. Similar to the 
near-circular case, the analytical delta-v is slightly lower than 
the one from optimal control theory. In Fig. 15 (ܽ‖Δࢋߜ‖ ൌ
100	m), the closed-form solution is shown to be optimal as 
long as ആ

ሺభశሻ
|ܽߜ∆| ൏ భ

ആ
‖Δࢋߜ‖. After this threshold, the required 

delta-v becomes proportional to |∆ܽߜ| and the closed-form 
solution is sub-optimal. An analytical optimal solution for this 
case remains to be found. This result is in agreement with the 

 
Figure 8. Impulse locations from closed-form and primer vector

Figure 9. Optimality of in-plane solution when |Δܽߜ| ൏ ‖Δ݁ߜ‖ 

Figure 10. Optimality of in-plane solution when |Δܽߜ|  ‖Δ݁ߜ‖  

TABLE 8. OUT-OF-PLANE ROE RECONFIGURATION ERROR

ROE No perturbation Perturbations included 
௫݅ߜܽ 0.11% 0.10% 
 ௬ 0.77% 0.34%݅ߜܽ

 
Figure 11. Relative motion in T-N plane (left) and ROE space (right) 

 
Figure 12. Optimality of out-of-plane solution 



  

derivation of the delta-v lower bound for eccentric orbits 
which predicts the switch in the change of ROE that drives 
the fuel-cost to be at ఎ

ሺଵାሻ
|Δܽߜ| ൌ భ

ആ
‖Δࢋߜ‖. 

Out-of-plane control in eccentric orbits is tested using the 
example reconfiguration of Section V.B., however the orbit 
eccentricity has been increased to 0.2. Fig. 16 shows the 
relative motion in the T-N plane of the Hill frame and the 
evolution of ߜ during the reconfiguration. The single impulse 
described in Section IV.C transfers the formation from start 
to aimed conditions according to a minimum path length in 
ROE state-space. 

VI. CONCLUSION 
 

This paper addressed the problem of closed-form optimal 
spacecraft formation control using impulsive maneuvers. 
First, a new simple method to derive the state transition matrix 
for mean ROE in perturbed orbits of arbitrary eccentricity was 
shown together with a generalized delta-v lower bound. 
Second, new in-plane and out-of-plane closed-form solutions 
for formation control were derived, namely in J2-perturbed 
near-circular orbits and unperturbed eccentric orbits. The 

optimality of the solutions were numerically verified by 
comparing the costs achieved by the closed-form solutions 
with an optimal control algorithm based on primer vector 
theory. The results show that closed-form maneuver strategies 
have the potential to outperform optimal control methods in 
terms of computational effort, simplicity, and predictability. 
On the other hand, research efforts are necessary to overcome 
the encountered limitations. In particular, optimal analytical 
solutions for the cases of perturbed eccentric orbits and 
reconfigurations with large relative semi-major axis are 
missing. Future work will also focus on the fusion of closed-
form and optical control methods to efficiently handle more 
challenging scenarios. 
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Figure 14. Optimality of in-plane solution when 

ఎమ

ሺଵାሻ
|Δܽߜ| ൏ ‖Δ݁ߜ‖ 

 
Figure 15. Optimality of in-plane solution when 
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Figure 13. Evolution of in-plane ROE for eccentric orbits 

 
Figure 16. Relative motion in T-N plane (left) and ROE space (right) 


